
 1 Copyright © 2008 by ASME

Proceedings of the World Conference on Innovative VR 2009
WINVR09

July 12-16, 2008, Brussels, Belgium

WINVR09-740

DRAFT: SPARSH UI: A MULTI-TOUCH FRAMEWORK FOR COLLABORATION AND
MODULAR GESTURE RECOGNITION

Prasad Ramanahally
Department of Computer Engineering

Stephen Gilbert
Human Computer Interaction, Department of

Psychology

Thomas Niedzielski
NSF REU Intern

Desirée Velázquez
NSF REU Intern

Cole Anagnost
NSF REU Intern

Virtual Reality Applications Center

ABSTRACT
Most current multi-touch libraries provide support to

recognize the touch input from particular hardware and

seldom support complex gestures. For rapid prototyping

and development of multi-touch applications, particularly

for collaboration across multiple disparate devices, there is

a need for a framework which can support an array of

multi-touch hardware, provide gesture processing, be cross

platform compatible, and allow applications to be

developed in the desired programming language. In this

paper we present criteria for evaluating a multi-touch

library and “Sparsh UI”– an open source multi-touch

library which is a novel attempt to address these issues by

enabling developers to easily develop multi-touch

applications. We also compare Sparsh UI with other multi-

touch libraries and describe several Sparsh-based

applications, including BasePlate, a system for

collaborative virtual assembly.

Keywords: Multi-Touch, Collaboration, Gestures,

Prototyping

1 INTRODUCTION
Multi-touch is a human-computer interaction technique that

allows users to interact with a system without the

conventional input devices, such as a mouse or keyboard.

Typical multi-touch systems consist of a touch screen

(table, wall, etc.) or touchpad, as well as software and

hardware that can recognize multiple simultaneous touch

points. Standard touch screens, such as computer touch

pads or ATM machines, generally recognize only one touch

point at a time.

Multi-touch is a growing area of research with a variety of

both hardware input devices and software libraries for

handling multi-touch input. Each of these software systems

could be considered a competitor for a common standard

for multi-touch applications, something which has not yet

emerged. This research presents a framework for

comparing multi-touch software protocols and one

particular approach, Sparsh UI, an open source multi-touch

gesture recognition library that is device agnostic and is

capable of running on a variety of platforms. Several

sample applications that use Sparsh are described.

Collaboration among different multi-touch hardware

devices necessitates the application to be compliant with

multiple hardware and platforms. The application should

also be capable of processing gestures for a variety of

applications and interaction designs.

2 DESIGN CRITERIA
A generic multi-touch gesture recognition framework can

be evaluated based on its approach to addressing the

following challenges:

1) The support of a variety of multi-touch input

devices.

2) Gesture recognition.

3) Support of different platforms e.g. Windows,

Linux and Mac.

Iowa State University, Ames , Iowa – 50011, USA

 2 Copyright © 2008 by ASME

4) Support of different development languages e.g.

Java, C++.

5) Interface scale, e.g., finger input vs. whole hand

input

6) Simultaneous collaboration of multiple users

Each component of this framework will be described in

more detail below, followed by a description of how Sparsh

UI addresses that challenge.

2.1 Ability to a Support Variety of Hardware.
In order to support a variety of hardware devices, a multi-

touch library must be able to standardize the input data

format from the different devices.

Most multi-touch devices generate the following

information from a touch, in addition to the (x, y)

coordinate values on the screen:

1) Information related to the creation of the touch

point when the finger comes in contact with the

screen (henceforth referred to as Point Birth).

2) Information related to the motion of the touch

point (referred to as Point Move).

3) Information related to release of the finger from

the touch screen (Point Death).

4) An identification number for each touch point

generated when a finger comes in contact with the

touch screen (Point ID).

Thus each touch point can be distinctly identified by the x-

y coordinates, the state of the touch point (Point Birth,

Point Move and Point Death) and the ID of the touch point

(Point ID). Sparsh UI specifies a format in which a device

should send touch data to it and provides a driver adapter

that can standardize the input from the driver which would

be compatible with Sparsh UI (Figure 1).The driver adapter

uses the data structure with the parameters mentioned

above. As of now we have Sparsh compatible drivers for a

60” FTIR-based touch table created at Iowa State

University, a Stantum SMK-15.4” multi touch tablet, and a

42” infrared-based bezel display from IR Touch. An

adapter for the Dell Latitude XT is in progress.

Communication between the device driver and the Sparsh

UI gesture recognition framework takes place over sockets

using TCP protocol. This allows the driver and driver

adapter to be written in the language of choice.

2.2 Gesture Recognition
Most contemporary open source multi-touch software

libraries provide only the ability to recognize the touch

points and pass the touch coordinates directly to the

application, leaving the application to do the gesture

processing.

Multi-touch is made intuitive by means of gestures and it is

vital for a multi-touch library to provide gesture

recognition support. The following considerations should

be addressed while providing gesture support to multi-

touch applications:

• Flexibility to specify the supported gestures at an

application level and UI component level.

• Support for providing touches point coordinates if

the application does need to do custom gesture

recognition.

• Ease of adding new gestures to the framework.

 The usage of various gestures can be specific to the

application. For example, our image manipulation

application Picture App makes use of the Drag, Zoom and

Rotate gestures, but another application called “Table

Tower Defense” just makes use of touch gestures. One

needs to process the touch point data to recognize all

possible gestures for the former and just send out the touch

coordinate data for the latter. Hence it is inefficient to

analyze raw touch data for various gestures unless the

application needs it. Similarly, not all the UI components

would require all the gestures. For instance, a button would

allow only Select, while a window title bar would allow

Drag and other gestures that indicate minimize, maximize,

etc. To incorporate this flexibility, we use the concept of

Group ID to identify the various UI components on the

screen. On each point birth, the application is queried for a

Group ID and the allowed gestures corresponding to the

point location. Different point birth sequences can be

associated to the same Group ID (analogous to multiple

fingers on the same UI component).If no gesture

recognition is required for a given touch coordinate, it can

return a null value indicating that there is no need for

gesture processing. The Sparsh UI gesture recognition

framework processes the incoming touch point coordinate

data, recognizes the associated gestures, and sends back the

Figure 1: The Sparsh UI Architecture: The Sparsh
Adapter standardizes touch events from varied
hardware, sends the events over TCP to the Gesture
Recognition Framework, which then sends appropriate
events to the software client via the Client Adapter.

 3 Copyright © 2008 by ASME

associated gesture event for the Group ID. At the

application end, it can be easily identified as to which

component has been acted upon and the gesture event can

be handled appropriately.

Applications can register for receiving the raw touch points

if they need to process special custom gestures. The

modular design of Sparsh UI makes it easy to add new

gestures to the gesture recognition framework. Currently

we are working on dynamically loading gesture modules

The intuitiveness of a multi-touch interface is achieved

through the use of gestures which are highly intuitive in the

application context in which they are used. The usefulness

of a gesture library would in part depend upon the number

of intuitive gestures that a library can support. Sparsh UI

currently supports the following gestures. More gestures

are being added as a part of continuous improvement of the

framework.

2.2.1 Select Gesture Simply placing a finger on the

multi-touch device performs this gesture. This gesture is

normally used for selection purposes. Although it can also

be used creatively as in our Table Tower Defense game.

The touch coordinates are passed to the application

whenever the gesture framework detects this gesture.

2.2.2 Spin Gesture Spin is the newest addition to the

Sparsh UI gesture list (Figure 2). This gesture is performed

by placing two fingers on the multi-touch device that

creates an invisible axis, somewhat similar to Jeff Han’s

two-handed hold-and-tilt gesture [1].In a 3D CAD-like

application, once the axis has been established by one

hand, the user is able to spin the 3D view point by dragging

a third finger perpendicular to the axis created by the first

two fingers. It can be used for any chosen axis of rotation.

This gesture can be used to manipulate views in any 2D or

3D environment.

Figure 2: Example of spin gesture.

2.2.3 MULTI-FINGER DRAG GESTURE The multi-

finger drag gesture is a generic drag gesture which detects

the drag (or swipe) when one or more fingers are moved

across the touch screen. If applications need not

differentiate between the number of fingers that are used to

do the drag operation, they can register for the multi-finger

drag gesture.

In all the drag gesture implementations, the gesture

recognition framework generates drag events with the

parameters ∆X and ∆Y, the amount of offset from the initial

position (initial position of centroid if it’s not single touch).

Figure 3: Example of one-finger drag gesture.

If an application needs to distinguish between the number

of fingers that resulted in the drag gesture, it can register

for one or more of the following gestures:

One-finger drag: The user performs this gesture by

placing a finger on the device and dragging it across the

surface (Figure 3). This gesture can be used for moving

graphic elements on the screen. It can also be used for

panning a view (e.g., panning a map).

Two-finger drag: This is similar to one-finger drag gesture

except that two fingers are used instead of one. The two

fingers may be held close to one another or apart.

Three- finger drag: In this case three fingers are used to

perform the drag or swipe operation. This gesture is being

considered to manipulate 3D objects in a multi-touch

environment where both 3D and 2D objects are present.

Similarly, Sparsh UI offers gestures for four-or five-finger

gestures.

2.2.4 Rotate Gesture This gesture is performed by

placing two fingers, either from the same hand or different

hands, on the multi-touch device and rotating them

clockwise or counter-clockwise (Figure 4). The gesture

framework generates an event with the parameters

consisting of the angle of rotation and the coordinates of

center about which rotation occurs.

Figure 4: Example of rotate gesture. Both fingers may

also move to perform the rotate.

 4 Copyright © 2008 by ASME

Figure 5: Example of zoom gesture, in this case

zooming out.

2.2.5 Zoom Gesture This gesture (Figure 5) is

performed by placing two fingers on the multi-touch device

and dragging them away or towards each other along a line.

The gesture is typically used for zooming in and out of

maps, or more generally, scaling and resizing screen

elements. When a zoom gesture occurs, an event consisting

of the scale factor is generated.

2.3 Support of Different Platforms
A generic framework should be capable of operation across

popular operating systems (Windows, Linux, and MacOS

X). Sparsh UI exists in both Java, which is supported my

most popular operating systems, and in C++ version using

the Boost library, which makes it cross platform

compatible.

2.4 Support of Different Languages
Since Sparsh UI uses socket based communication to

communicate with the multi-touch application, this allows

one to write Sparsh-based applications in language of

choice. Currently we have client adapters for Java / C++

which abstract the communication protocol over sockets

between the client application and the gesture framework.

In future we plan to provide client adapters for other

popular programming languages.

2.5 Support of Wide Interface Scale
Since collaboration across multi-touch devices often use

disparate multi-touch devices of varying dimensions, it is

important that gesture processing is not affected by the

varying resolutions of different devices. This is achieved by

using relative values for touch coordinates instead of

absolute coordinates. However it is the responsibility of

application developers to ensure the usability and

ergonomics of applications across devices of varying

dimensions. We are planning to provide support for getting

information regarding physical dimensions of the device,

resolution, etc. in Sparsh UI.

2.6 Support of Collaboration
Sparsh UI provides a platform to develop collaborative

multi-touch applications where collaboration is achieved at

application level, e.g., by using TCP sockets to have two

instances of the same application on different systems

exchange data. In future versions we plan to support

collaboration in Sparsh-UI so that various gesture events

can be exchanged across networked multi-touch devices.

But nevertheless there will always be application data

which needs to be exchanged at application level.

2.7 Summary of Framework
Table 1 compares Sparsh UI with TouchLib by the
NUIGroup [6] for the various features discussed so
far.

Feature Sparsh UI Touch Lib

Multi-Hardware

compatibility

Yes No

Gesture Recognition Yes No

Cross Platform support

(Linux/Windows/Mac)

Yes Yes

Multi-language support Yes No

Interface scale Pending No

Direct collaboration support Pending No

Table 1: Comparison of Sparsh UI and other multi-
touch libraries.

2.8 Ease of writing Multi-touch applications
Sparsh UI eases the process of writing a multi-touch

application and enables rapid prototyping of multi-touch

applications. Since Sparsh UI takes care of hardware

abstraction and gesture recognition, the developer’s task is

greatly simplified. The framework provides helper libraries

application. As a part of Sparsh UI, framework helper

libraries (for C++ and Java currently) are provided to

abstract all the communication with the Sparsh Gesture

Framework. To develop a multi-touch application with

Sparsh UI the following needs to be done:

1) Have a mechanism to uniquely identify each UI

component on the screen by means of a group ID. This

would enable the application to immediately act upon

the UI component when an event is delivered for a

particular group ID.

2) Write event handlers for the various gesture events

delivered by the Sparsh UI framework. Whenever a

gesture event occurs, a call back function is called

where one would need to identify the type of gesture

event and call the appropriate event handler.

The above process is much simpler than writing custom

gesture recognition code.

 5 Copyright © 2008 by ASME

2.9 Touch Simulator
As a part of our framework in order to test the multi-touch

applications, we have a touch simulator which can be used

to simulate multi-touch input using mouse input. Multi-

touch inputs can be simulated by freezing the screen

(pressing “Esc” triggers the freeze in our simulator) and

using the mouse clicks and drags to simulate the touch

input of fingers. When a developer has accumulated all the

simulated touches needed, she can exit out of “freeze

mode,” and all the clicks are given as simultaneous touch

inputs to the gesture recognition framework. The touch

simulator also takes care of assigning proper IDs and states

to the simulated touch points. This touch simulator

expedited the testing of various multi-touch applications

that we developed using Sparsh UI. Figure 6 shows a

snapshot of touch simulator in the freeze mode when the

multi-touch events are recorded. The various tracks shown

in the figure indicate the path traversed by mouse pointer,

the circular spots mark the Point Birth and Point Death

which are simulated by button click and button release

respectively.

On exiting from the freeze mode, the simulated events are

activated.

Figure 6: Example of drag sture in the Touch Simulator,

in this case dragging objects in a circular path.

3 IMPLEMENTATION EXAMPLES USING
 SPARSH UI
3.1 Remote Collaboration in Multi-Touch

Environment for Computer Aided Design -
BasePlate.

A multi-touch environment, in conjunction with the use of

intuitive gestures, can offer an excellent platform for design

CAD tools of the future. Previous works [7] have shown

how collaboration can contribute to better understanding

and efficient solving of a problem. Hence allowing distant

users to collaborate on a CAD project in a multi-touch

environment may enable faster design work.

To explore this concept we devised a simple collaborative

multi-touch application called BasePlate. This multi-touch

application is inspired by LEGO® bricks (Lego). Users can

build structures by placing 3-dimensional blocks on a plate.

The application is collaborative in nature, e.g., users can

see what other participants are doing. If user A moves a

block by dragging it, user B sees it move also. The

common structure is displayed to all users who are

participating in the shared task. However, each user can

have his or her own individual view (orthogonal or

perspective). Also, one can identify which blocks are

arranged by which user. The touch gesture is used to select

and place a block on the BasePlate, the drag gesture to

move the block on the BasePlate, and the spin gesture to

rotate the view of the BasePlate. Figure 7 shows a

screenshot of the application.

Figure 7: Screenshot of BasePlate – a collaborative

multi-touch application.

3.2 Table Tower Defense

Table Tower Defense is a game that was developed

keeping in mind that two to six people can simultaneously

participate on a large multi-touch device like the Iowa State

University 60” FTIR-based Touch Table. This game is a

good display of the power of collaboration (on the same

device) that can be achieved using multi-touch devices.

It’s a simple game in which participants on one side send

tiny “creeps” or missiles to the opposite side and defend

their own territory by building towers and destroying the

creeps sent by opponents

Figure 8: Screenshot of Table Tower Defense – a multi-

user, multi-touch game.

 6 Copyright © 2008 by ASME

This collaborative game, in which multiple users are using

natural touch-based gestures to interact directly with the

game elements they care about, would not exist without the

use of multi-touch. Figure 8 shows a screen shot of the

game and the video of game in action can be found at [5].

3.3 Picture Application
This is a simple photo application where one can use

gestures to manipulate photos. Traditional gestures of

Select, Drag, and Zoom are used.

Figure 9: Screenshot of the Picture App

4 CONCLUSION

We have described criteria for evaluating a multi-touch

software library, presented Sparsh UI and how it compares

with TouchLib. We also presented the helper tools

available as a part of our framework that expedite the

development and prototyping of multi-touch applications.

We also presented a novel approach of utilizing

collaboration in virtual assembly environment using multi-

touch. Real-time collaboration will likely become more

important to CAD in the future and is worth exploring with

new applications such as BasePlate.

5 FUTURE WORK
Currently we are working on adding more gestures to the

gesture framework. We are also working on resolving

conflicts when multiple gestures occur in conjunction and

on resolving scenarios where disparate actions from

separate users can conflict, appearing to be a single gesture.

Future applications include more complex virtual assembly

for manufacture and military command and control

applications in which users collaborate across

environments, e.g., from inside the Iowa State University

VRAC’s C6 and C4.

6 ACKNOWLEDGEMENTS

We thank students who participated in this research:

Satyadev Nandakumar, Rob Evans, Anthony Ross, Jay

Roltgen and Peter Wong. Research on Sparsh UI was

sponsored in part by the Grow Iowa Values Fund and part

by the US Air Force Research Lab. Work on BasePlate was

performed at Iowa State University as part of a research

internship sponsored by NSF (IIS-0552522), the Human

Computer Interaction Graduate Program, and the Program

for Women in Science and Engineering.

7 REFERENCES

[1] Dohse, K.C.; Dohse, T.; Still, J.D.; Parkhurst, D.J.,

"Enhancing Multi-user Interaction with Multi-touch

Tabletop Displays Using Hand Tracking," Advances in

Computer-Human Interaction, 2008 First

International Conference on , vol., no., pp.297-302,

10-15 Feb. 2008

[2] Grossman, T.; Wigdor, D., "Going Deeper: a

Taxonomy of 3D on the Tabletop," Horizontal

Interactive Human-Computer Systems, 2007.

TABLETOP '07. Second Annual IEEE International

Workshop on , vol., no., pp.137-144, 10-12 Oct. 2007

[3] Leganchuk, A.; Zhai, S.; Buxton, W., “Manual and

Cognitive Benefits of Two-Handed Input: An

Experimental Study,”Trans. on HCI 5(4), vol., no., pp.

326–359, Dec. 1998.

[4] Han, J. (2006, August). Jeff Han demos his

breakthrough touchscreen |Video on TED.com.

Retrieved July 24, 2008, from TED: Ideas worth

sharing:http://www.ted.com/index.php/talks/jeff_han_

demos_his_breakthrough_touchscreen.html

[5] http://www.youtube.com/watch?v=71BfgXZVBzM

[6] Natural User Interface Group : Open Source

 Multitouch - http://nuigroup.com/wiki/touchlib/

[7] Arias, E., Eden, H., Fischer, G., Gorman, A., and

 Scharff, E. 2000. Transcending the individual human

 mind—creating shared understanding through

 collaborative design. ACM Trans. Comput.-Hum.

 Interact. 7, 1 (Mar. 2000), 84-113

