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Abstract

Tools for visualization of biological data fo-
cus more on the algorithms behind data pro-
cessing than on the needs of their biologist
users. Scientists in the field of biology and
bioinformatics require software that is more
versatile, yet simple to use. This has be-
come a necessity as the depth of informa-
tion scientists have to organize becomes more
and more complex. Disparities between the
programs capabilities and their users’ needs
lead to problems including difficulty in im-
porting data, exporting data, and data ma-
nipulation. These problems are demonstrated
by the inability for many bioinformatics tools
to adapt to quickly changing user needsthis
ranges from a wider aggregate of biological
databases to more intuitive representations
of biological data. We seek to focus on the
latter, evaluating limitations in visualization
software to better fit user needs. One such
problem is the way metabolic flux is visualized
in the widely used graph visualization program
Cytoscape. We investigate different node-
edge representations using prototypes of vary-
ing edge shapes and colors to denote flux mag-

nitude and direction. Our aim is to explore
different methods of visualizing graph edges,
providing an effective analysis for portraying
graph data in a clear and concise manner.

I. Introduction

Technology has led to new laboratory tech-
niques, leading to the generation of large
amounts of data in the biological sciences.
As the amount of information available to
scientists increases, the abilities of current
technology needed to accommodate these
changes must improve accordingly. Existing
technologies are largely focused on the pro-
cessing algorithms behind the data than the
needs of their most common users. These
users, primarily scientists focused in the
biological sciences, require software that is
more versatile, yet simpler to use. Usabil-
ity tests have shown that while biological
analysis through the use of software tools is
becoming increasingly common, only general
exploratory analysis is truly supported
[1]. Mirel suggests that there needs to be
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more functionality in the programs such as
querying and visual modeling.

One of the largest issues in the field of
data visualization is the need to efficiently
bring a variety of biological networks into
formats that can be clearly interpreted
and easily understood by users. Previous
investigations by biological researchers
concluded that there are components of
pathway system representations that are key
to effective data visualization [2]. Included in
this list is the ability to overlay information
on the pathways in a visually meaningful
manner and enabling users to see multiple
interconnections simultaneously [3].

One method in which current software
can be improved on is the way data is dis-
played on an edge in a standard node-edge
network. In the field of biology and bioin-
formatics, reactions between molecules and
enzymes are represented as edges between
nodes in a graph [4]. Attributes such as
reaction rates, stoichiometry, and flux data
are examples of data that are viewed on
a graphs edges, allowing the user to easily
determine the magnitude and/or importance
of a specific reaction in a pathway. The
current method of edge visualization is
to use a node-link representation using a
standard arrow pointing to the target node
to show directionality. Attributes of the
interactions of nodes are typically shown
as a number labeled on the edge or as a
node in the middle of the reactionthis is
typically the magnitude, or empirical value
of the reaction (a standard representa-

tion of a network is shown in Figure 1).

II. Related Work

1 Background Informa-

tion

In order to understand the abilities and
limitations of the current software, we
conducted a few interviews with researchers
in the field of biology and bioinformatics.
Our selection of interview participants
included faculty and graduate students at
Iowa State University including: Dr. Julie
Dickerson, Dr. Eve Wurtele, Dr. Jacqueline
Shanks, Jong Moon Yoon, and Ting Wei Tee.

Dr. Julie Dickerson, associate professor
in Electrical and Computer Engineering
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at Iowa State University, whose primary
research is in the area of bioinformatics,
claims that software developers need not do
much to improve current visualization tools.
The ability to handle larger graphs, but with
more functionality is her biggest concern for
visualization programs like Cytoscape. Dr.
Jacqueline Shanks, Manley Hoppe Professor
in chemical engineering and plant systems
engineering, is focused on the reliability of
current programs. Software that is hard to
use and provides a representation of data
that isnt meaningful is her biggest concern.
She envisions that programs should treat
biological pathways like cars in trafficthe
location of each molecule and enzyme in a
pathway should grant the user information
about the system. Dr. Shanks also states
that different levels of abstraction for view-
ing these interactions is important, as well
as gaining as much or as little detail as
necessary for a researcher to complete a task.
This concept of program flexibility is also
supported by Dr. Eve Wurtele, a professor
in genetics and cell biology. Dr. Wurtele
emphasizes the importance of program
versatility, claiming that research on data
visualization in plant molecules needs tools
that can collapse large networks to a simpler
viewa problem only recently acknowledged
by these programs [3]. The necessity for
increasing program capability without in-
creasing complexity is also noted by Yoon
and Tee. They mention that expanding user
control as much as possible is ideal, but
not if the implications involve large, bulky
programs that are hard to navigate.

To establish a starting point for our
software analysis, we investigated some of
the most prevalent tools for biological graph
visualization. Included in our search are
the programs Cytoscape, VisANT, Net-
workX, and PathCase. Cytoscape, originally
created for biological research, is now a
common platform for network analysis and
visualization [5]. It allows users to create
plug-ins for any large modification they want
to see within the program. VisANT is an
visualization application that provides many
different interfacesa completely online, but
limited, web application, a downloadable
version that allows for customization, and
a large version or very large networks [6].
NetworkX, a software package for Python,
provides much needed tools for analysis of
networks and visualizations of their physical
layout [7]. Despite its completeness and
functionality in being able to modify the way
networks are laid out, NetworkX provides
only a mechanism for visualization. The
materials necessary to produce graphs of any
significance must be provided by the user.
The PathCase software is more biologically
based than the previous few. It features a
web-based system, an interactive metabolic
pathway tool for clients, and the ability to
query in many different ways [8].

2 Software Analysis

In order to evaluate the different pieces
of software we created the following set of
criterion based on biologists feedback and
Saraiyas five important features of software
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for exploratory pathway analysis [3]:
Web-based
The ability for each program to be web-based
is a growing concern as biological databases
are mostly online. Requiring the user to
download and install an interface is an
obstacle that would be ideal to circumvent.
Import/Export Files
As common power tools need drill bits and
other pieces to implement their jobs, many
biological visualization tools require pieces
to function fully, such as the uploading of a
pathway spreadsheet, or converting a path-
way graph to an image file. This includes
data input/output of the users choice.
Layout Modification
Arguably the most important feature of a
widely-used piece of graph display software,
the control a user has over his/her environ-
ment is crucial. There are countless ways
in which a user may want to manipulate
a pathway, including modifying node/edge
size, color, and shape. There may also
be a desire for the user to create original
modifications to be implemented.
Updated Information
Although this feature usually comes with the
Web-based feature, some offline programs do
not have an up-to-date database of biological
pathway information. Some programs use
direct links to multi-organism databases
such as KEGG, MetaCyc and BioCyc to
keep their records relevant, but that is not
the case for every program [9].
Command Line Interface
The ability for each program to have a
command line interface is not as important
as the previous four criteria, but its still

useful for both batch processing of data,
and simple interfacing from outside of the
programs interface. Table 1 describes how
well each of the programs fit the above
criteria, leading us to land on Cytoscape as
a starting point for feature modification.

Cytoscape, originally released in 2003 as an
open source platform, is the most widely-
used tool for biological pathway visualization
[5]. It has gone through numerous revisions
since then and has a simplified plug-in
structure to allow for user modifications. Its
most prominent feature is the large developer
base that has enabled a variety of plug-ins
to be developed for varying purposes [4].
The basis for our user study focuses on how
metabolic flux is visualized in this software.

3 Creating a User Study

Metabolic flux describes the rate of en-
zymatic conversions between molecules in
metabolic pathways. There are currently
very few existing techniques to visualize
flux values, despite the growing need for
flux data to be represented graphically [4].
The most prominent Cytoscape plug-in for
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visualizing flux, by Konig and Holzhutter, is
called FluzViz [10]. It can import networks
of specifically designed to represent flux val-
ues, as well as export flux visualizations to
common output formats, including PNG and
PDF formats. It is limited, however, by the
inability for the user to quickly and clearly
modify the layout of the software. Upon
loading a network, the user is presented with
a black-and-grey view of the network, with
one of the few new visualization options
being black lines that use thickness for mag-
nitude, and an arrow for direction (Figure 2).

We would ideally like the user to be able
to customize the visualization of this in-
formation, and a number of solutions have
been proposed. In their study on how
people perceive graphs, Holten and van
Wijk found that when it comes to nodes
and edges, arrows are not best graphical
representations of direction. They showed
that tapered edges, fading from light to
dark/dark to light, and color fading were
all more effective than arrows when it came
to correctly determining edge direction
[11]. We seek to expand on their findings
by studying how well users can determine

magnitude of an edge, as well as direction.
This additional feature is necessary in the
field of bioinformatics, for biologists are
interested in not just if two nodes interact,
but how they interact. The ability to
quantify these interactions is also growing
concern in the field [12]. To examine how
users understand the representation of both
edge direction and magnitude, we conducted
a survey they separates several different
ways that graphs can be represented. In his
study on visualizing graphs with directed
edges, Holten showed that arrows do not
necessarily give the clearest depiction of edge
direction and magnitude [11]. We based our
prototypes on this premise, as the way a user
interprets optimal visual representation is,
for the most part, subjective. Some of the
prototypes Holten used in his survey laid the
foundation for ours. We also took Beckers
analysis of graph alternatives into account.
He found that in large networks, the common
line-arrow representation with a numerical
value to denote magnitude is not always
the most clear to a user [13]. Taking this
into account, the numerical value became
our control prototype when designing this
survey. We developed five different graph
versions in total for users to work with, as
shown in Figure 3:
- Graph 1: Darkened arrows. Edge direction
is depicted with an arrow, and magnitude
is shown by how darkened each arrow is,
with a spectrum of shades from light grey
to dark grey to black. A magnitude of zero
corresponds to a completely white arrow, and
arrows corresponding to larger magnitudes
progressively darken in color (Figure 3a).
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- Graph 2: Tapered lines. Edge direction
is depicted by the tip of each thinning line,
and magnitude is shown by thickness of
the beginning of each line. A magnitude of
zero corresponds to a straight line with no
tapering thickness (Figure 3b).
- Graph 3: Faded lines. Edge direction
is shown by the gradient of light-to-dark
fading and magnitude is represented by what
percentage of each line is darkly shaded
before fading to white. A magnitude of zero
corresponds to a completely white line with
no shading (Figure 3c).
- Graph 4: Colored arrows. Edge direction
is represented with an arrow, and magnitude
is shown by both color intensity (from light
yellow to dark red) and arrow size. A
magnitude of zero corresponds to a yellow,
thin line (Figure 3d).
- Graph 5: Numerical values. Edge direction
is shown by arrows and magnitude by its
numerical value. A magnitude of zero is
represented by the number 0.0 (Figure 3e).

To eliminate bias in our graphs, we ensured
that all of the graph edge/node pairs were
similar, but that none of them were dupli-
cates. We also randomized the order in which
each of the graphs appeared for each partic-
ipant. This was an easy task to accomplish
thanks to Bennetts emphasis on Gestalt prin-
ciples and the emotional design framework
that Harary and Norman developed. The
Gestalt principles and framework both con-
sist of understanding the ability of a user
to derive meaning from shapes, nodes, and
edges. Bennetts understanding of aesthetic
heuristics supports the foundation for what
makes graphs intuitive and easy to under-
stand [14]. One of the main principles of
this that our graph prototypes followed is the
minimization of the number of edge crossings
and the limitation of edge line lengththis is
proven to improve graph understandability
[15].

III. Hypotheses

From a human-computer interaction perspec-
tive, we expected a few qualities about some
of the graphs to be intuitive. For instance,
we assumed graphs 1, 4, and 5 would have
little to no ambiguity regarding graph direc-
tion, since direction was denoted with arrows
pointing to the target node. It would also fol-
low that graph 5 would have the most clear
magnitude, as there arent many different in-
terpretations that one can derive from a nu-
merical value [11]. Our study, however, aims
to explore what exactly gives a graph the
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property of intuitiveness. Some of the graphs
were non-specific in terms of a clear direc-
tion, which is intentional on our behalf. We
wanted to see if a user would interpret graph
3s directionality as light-to-dark or dark-to-
light without additional assistance, or if the
user assumed that graph 4s gradient ranged
from yellow-to-orange or yellow-to-red with-
out additional assistance. We focused on how
users would interpret each graph because of
a future concern described in the conclusion
of this paperhow much instruction the user
should have for any given task. Knowing how
to salvage the relationship between the soft-
ware developer and the user, the motivation
for our study, is also a key point our hypothe-
ses try to evaluate.

IV. User Study

After creating the prototypes, we had users
perform different graph analysis tasks,
including determining the direction of a
given edge, the relative magnitude of an
edge in comparison to another edge, and if
an edge is bidirectional. We also asked users
to evaluate the usability of each graph with
regards to aesthetics and functionality. The
study was online, hosted by Kwik Surveys,
and a copy of it is attached in Appendix A
[16].

For each prototype, users were asked a
series of questions related to the respective
graph. The first three questions were related
to the magnitude of the values on the edge,

the second three questions were related
to the direction in which the edges of the
graph were pointing. A final question asked
the users to self-report on how confident
or not-confident they were in answering
the questions pertaining to each individual
graph. After answering questions about each
individual was asked to give each graph a
score from one to ten on how easy or difficult
they found it to determine direction and
magnitude. The final section asked users
to answer a series of open ended questions
on which graphs they found the easiest and
most difficult to use. Participants were
selected based on a pool of biological and
computational students and faculty at Iowa
State University.

V. Results

In order to determine how well the proto-
types performed, each graph was analyzed
based on three factors. The first factor was
user accuracy. Users were asked a set of
seven questions for each graph, comprising
of three questions regarding edge magni-
tude, three questions about edge direction,
and a final question that prompted each
user to evaluate how confident he/she was
working with each graph in question (For
the complete survey, see Appendix A). The
first three questions were grouped together
and the percentages of correct answers were
taken as the accuracy of magnitude by graph
(Figure 4). Errors were broken down into
incorrect answers and unable to determine.
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A similar process was used with the last
three questions to determine accuracy of
directionality. As there was no option for
unable to answer given, users were forced to
choose a direction and the results are given
as percent accuracy and percent error.

A one-way ANOVA was run in SAS on
the data in order to determine the sig-
nificance of the percent accuracy. For the
purposes of the ANOVA, the number of ques-
tion in each category was used, causing the
”unable to determine” choice to be counted

as incorrect. Total accuracy, in terms
of correct answers, is shown in Figure 5.

Immediately after answering the questions
about magnitude and direction, users were
asked to rank their confidence on a scale of
1 to 5, with 1 being ”non-confident” and 5
being ”very confident” (the average scores
are shown in Figure 6).

A complete list of our results is available in
Appendix B.
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VI. Discussion

Our survey tested five different prototypes
based on two features, directionality and
magnitude. The objective of our study was to
determine which of our five prototypes per-
formed the best in terms of the user’s abil-
ity to determine magnitude and directional-
ity. The overall results for magnitude sug-
gests that graph 5 performed the best in dis-
playing magnitude but was not the best when
it came to directionality. When analyzing the
directionality of the edges, graph 1 performed
the best. When testing for directionality, the
user was not provided with an ”unable to de-
termine”, forcing the user to make a selection.
This may have impacted the data with an in-
crease in the error percentage, since the user
had to guess when left with no other choice.
We surveyed a total of 23 participants, of
which about 40Based on the accuracy tests,
our control, graph 5, had the highest overall
score. Graph 4 has a slightly higher score on
the directionality (Figure 5). Users reported
that they felt the most confident when work-
ing with graph 5, which was expected, due
to its numerical representations (Figure 6).
There is a significant difference in the users
ability to determine the magnitude in graph 5
versus all of the other graphs. Outside of the
control graph, graphs 1 and 4 had the best
scores in both accuracy and direction from
the self-reported scores and accuracy tests.
From both the self-reported data and the ac-
curacy data there was no real difference be-
tween graphs 1, 4, and 5 in the area of di-
rectionality. All three of the graphs use a

slight variation of a standard arrow notation.
Graph 2 had the least amount of difference
from the control based on accuracy, closely
followed by graph 4. Both graph 2 and graph
4 use a variation of line width to denote mag-
nitude, and the results showed no statistical
difference between the two in terms of user re-
sponse. We also found that Holten’s assertion
of tapered lines did not show a significantly
better user experience [11].

VII.
Conclusion/Future
Work

The different visualization methods used in
this study are not exhaustive and further
study may be warranted on different graph
types. It may also be beneficial in the future
to determine how many different factors
should be used to increase user performance.
In working with the graphs, we were not
able to record the time required for each
prototype. This data would help give a more
accurate depiction of how difficult or easy a
graph is to decipher. It is expected that the
control variable would not perform as well
on a timed test due to the need to compare
each number individually.

Despite the possible modifications to
our user study, our findings suggest many
improvements for data visualization tools.
Both Cytoscape and its flux plug-in FluxViz
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prompt users to provide insight to make the
programs more usable [5, 10]. Our analysis
of these programs and their limitations,
presented in this research paper, provides an
analysis that
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