
Abstract

This project explores Apple iPhone’s capacity as
an engaging, multi-user application environment.
Taking advantage of iPhone’s unique operating
system, powerful hardware, and various modes of
interaction, two multiplayer games for Apple’s
iPhone were developed, WapIt! and Turret Wars .
Next generation mobile devices like iPhone exhibit
great potential for diverse new mobile applications,
but, until recently, developers have given little
consideration to the differences in the way users
interact with and perform tasks on mobile and
desktop computing devices. As technology advances
and mobile computing becomes increasingly popular,
focused effort, as advocated by Gorlenko and
Merrick [4], must be applied in addressing usability
and functionality issues associated with fully mobile
wirelessly connected computing devices like iPhone.
The games developed in this project demonstrate the
process used to develop multi-user applications,
including the design of the networking structure, the
visual user-interface, and customizable multitouch
and accelerometer gestures.

1. Introduction

 The purpose of this
project was to explore
iPhone’s capacity as an
engaging multi-user
application environment.
In the past, developers
have approached mobile

application design as if writing for tiny desktops with
novel hardware; little consideration has been given to
the differences in the way users interact with mobile
and stationary devices. Gorlenko and Merrick
advocate focused effort in addressing the usability
issues associated with “fully mobile wirelessly
connected” (FMWC) computing devices like iPhone
in order to better design applications beneficial to
users in mobile situations[3]. To this end, this
research team presents the design process for two
multiplayer iPhone games, WapIt! and Turret Wars,
which address issues related specifically to the user
interface design and networking structure.

The game WapIt! was
designed as a multiplayer
mini-game to be included in a
set of other single level games
as part of an overarching
multi-player environment.
Created using Cocoa Touch,
the development framework
of the iPhone OS, this game
uses the basic command and
response structure of the
popular children’s toy BopIt.
WapIt! asks the player to
perform a certain gesture on
the multitouch screen or with the accelerometer, a tap
(Wap!), swipe, pinch, or shake, then checks to see if
the appropriate gesture was entered. If the player
follows the command correctly in the given amount
of time, then he or she is presented with another
gesture, and the cycle repeats faster and faster until
the player makes a mistake. The multiplayer version
of WapIt! is turn-based, and played on multiple
iPhones connected to each other over a wireless

Developing Multi-User Applications For iPhone
Designing Engaging Applications for Multiple Users on Next-Generation Mobile

Platforms

Nizar Khalife
University of Puerto Rico
khalifenizar@gmail.com

Jasmine Jones
University of Maryland-

Baltimore County
jasmin3@umbc.edu

Paul Clay
Reed College

contactclay@gmail.com

Brandon Newendorp
Iowa State University

bnew@iastate.edu

Ken Kopecky
Iowa State University
kennyk@iastate.edu

Dr. Eliot Winer
Iowa State University
ewiner@iastate.edu

Figure 1. iPod Touch

Figure 2. Graphics
from WapIt!

network. On each turn, the game issues a certain
number of gesture commands that must be correctly
entered by the active player, then “passes” the turn by
sending a message to the next player’s iPhone. The
other players can see what the active player is doing
and hear the beat on their iPhones, but cannot enter a
gesture until it is their turn. If a player loses, they can
still see and hear the game but will remain in inactive
mode until the game is over, which occurs when
there is only one player left.

Turret
Wars was
modeled after
the classic DOS
game, Dome
Wars, and uses
OpenGL ES, an
open-source

graphics library
for embedded
systems, to draw the scene. Two turrets, placed on
randomly generated terrain, are controlled by
opposing players whose goal is to destroy the
opposite player’s turret. Each turret is aimed and
fired using finger gestures on the multitouch screen;
an opening pinch motion creates an aiming circle
around the turret that can be rotated by sliding the
fingers around the arc of the circle. Shots are fired
after aiming by tapping the area within the circle;
shot strength is proportional to the distance of the
player’s finger from their turret. Shots will damage
the enemy turret and can destroy terrain wherever
they hit. The game continues until one of the turrets
is destroyed by multiple direct hits. This game is also
played over a wireless network with another local
player, and works similarly to WapIt! In single-player
mode, the player competes against the computer.

2. Application Design Process

The design process used in this project is
comparable to the Dartmouth-Thayer Engineering
Problem-Solving Cycle, an engineering design
framework that uses recursive iterations to help
engineers develop a specific solution to a general
problem. The Dartmouth-Thayer cycle consists of
seven steps which move the problem-solver through a
process of identifying the problem, setting the limits
of usable solutions, brainstorming a set of solutions,
analyzing the set against the limits to select the best
solution, then repeating the process with increasing
specificity until an appropriate solution is found[8].
The design process for this project has only four
steps, and is organized for software development.

2.1 Define the Goal

 The goal of this project was to conduct research:
to discover and add to the existing knowledge of
development on next-generation mobile devices like
iPhone and to develop applications that took
advantage of as many of iPhone’s features as
possible. The secondary goal of this project was to
make an application that was interesting for the user
to experience, and fun for the developer to write.

2.2. Synthesize the Idea

The next step is to determine the form the
application will take. Questions like, “What do we
want this application to do?”, “Why will a person use
this application?” should be asked here. Next-
generation mobile devices like iPhone provide an
extremely flexible platform on which to build an
engaging application, however, special care must be
taken to conform to the heuristics of usability for
mobile devices [3]. To preserve the simplicity and
intuitiveness typical of iPhone, preset conventions
and methods are built into Cocoa Touch that govern
the way developers can access iPhone’s functions and
hardware. Yet, even for developers familiar with
Cocoa, the desktop version of the mobile framework,
the transition from desktop to mobile application
development presents unexpected challenges.
Knowing the type of application that will be
developed and the conditions or environments it will
ideally used in enables the developer to plan the best
design for the interface and underlying processes in
order to maximize given resources [7].

For this project, the applications took the form of
games since games could incorporate all or most of
the novel functions of iPhone more easily than other
types of applications. The team was also more likely
to invest the amount of time and energy needed to
create and perfect a truly engaging application if
developing something fun. The games would ideally
be used for short-term entertainment purposes when
the user is idle or wants a fun way to pass the time.

2.3. Identify Constraints

Challenges in the development of mobile
application development stem from three sources: the
ideals of the developer, the expectations of the user,
and the capabilities of the hardware [6]. If either the
ideal of the developer is not realized or the
expectations of the user are not met in a given
application, then it is deemed a failure. The same

Figure 3. Screen of Turret Wars

holds true for applications that make both the
developer and user happy in theory, but are poorly
designed for use on mobile devices. A developer
must identify the constraints associated with a certain
application to determine if it is feasible to implement.
In the Dartmouth-Thayer cycle mentioned above,
setting general application constraints is intended to
eliminate the bias of the engineer from the design
process, which is why the limits are set in place
before solution are proposed. In the software design
process of this project, however, the limits set are
designed to make sure the preferences of all parties,
including that of the developer, are considered in
development of the application. Specifications
included standard functionality perimeters as well as
the more qualitative desires of the users and
developers. To narrow the field of alternatives, the
team weighted each constraint based on its
importance in the scope of the project. Some
constraints, like “has research value,” were deemed
absolute limits, so game ideas that did not fit these
particular criteria could not be chosen at all. Overall,
the games in this project were designed to be as
simple and streamlined as possible, fulfilling all
necessary program functions in an entertaining way
while also keeping in mind the limitations of the
platform on which the games would be implemented.

4. Implement Solution

The next step was the development and
implementation of the game idea, which is detailed in
the next section. Initially, the game idea that passed
the most constraints and all of the absolute limits was
a set of educational mini-games. However, the team
decided that those types of games did not adhere to
one important absolute specification that had been
previously overlooked—the games were not much
fun to design, and there would be very little room for
creative expression. After going through the design
process, the team finally chose to develop WapIt! and
Turret Wars, two “just for fun” games, as the
applications for the project.

3. Application Development

3.1. Networking

The networking code that supports the
multiplayer aspect of this project is based on a
Server/Client design pattern. It sets aside a
centralized location for storing user data, simplifying
communications between connected iPhones, and can
use any arbitrary available port on the network,
decreasing the likelihood of signals between iPhones
become lost or corrupted. To play a networked game,
players who chose the “multiplayer” option are
presented with the option to “Create New Game,”
which designates that iPhone as a host, or to “Join
Game,” which makes the device a client. iPhone then
uses Cocoa Touch's implementation of Bonjour, a
zero-configuration networking system for automatic
discovery of network clients, to enable host iPhones
to publish a game service on the local network or
client iPhones to discover local servers. Once a client
discovers the servers on its network, a table appears
displaying a list of current servers, allowing the user
to choose which host they would like to play with.
This option gives greater flexibility to users who
might want to play with a group of friends instead of
random players in the area.

The tools the team used and created in making
these multiplayer games form a foundation for future
developers wanting to design multi-user applications,
and, unlike previous networking implementations,
allow applications to handle connections from
multiple clients. The code allows developers to
publish and discover networked applications using
iPhone and UDP sockets, as well as general UDP
applications and services, and can be extended to suit
the particulars of any type of application. To
customize the networking capability of specific
applications, developers can add more data objects
for transfer in messages or can communicate using
different message types. Developers can also
customize how an iPhone discovers other iPhones
running a networked application, how a host device
handles devices that wish to connect as clients, and
how applications handle server connections.

Figure 4. Comparison of Dartmouth-Thayer Problem-solving Cycle and Mobile Application Design Process

Figure 5. Diagram of Screen Input/Output Hierarchy

3.2. Gesture Input Design

The user input aspect of both WapIt! and Turret
Wars was developed with simplicity as the principal
goal. The multitouch gestures (tap, swipe, and pinch)
used for these games are all easily performed within
iPhone’s small screen space; each gesture was also
designed to use up to three fingers, though iPhone’s
touchscreen can handle more, in order to ensure that
a user’s hand would not obscure the view. The
gestures for WapIt! were chosen knowing that users
may already be familiar with them from using other
touch-based applications on iPhone, which would
make the game simpler to learn and play. The
circular brushing gesture used to control aiming in
Turret Wars was inspired by the original mouse
pointer motion of Dome Wars, and allows the user to
easily choose the angle of the firing direction.

The code written for gesture recognition in the
games is centralized and customizable. It provides a
strong foundation for developing recognition for even
more complex gestures. The multitouch code can
supply information about individual positions,
velocities, and angular relationships of up to three
finger touches, which can be manipulated to detect
new, unique gestures for future applications.

The accelerometer gesture for WapIt! required
extensive user-testing at every stage of its creation.
Initially, a twisting motion was to be incorporated
into the game, however, it was converted to a simpler
“shake”; developing an algorithm that could
distinguish the motion while account for the multiple
variances in the way individuals hold and move
iPhone proved to be too complex and time-intensive
for the purposes of this project. The algorithms were
built using visual and contextual information from an
accelerometer graph application from Apple’s
developer website that displayed the three-
dimensional velocity of the device. The final “shake”
gesture allows a larger range of motion and greater
sensitivity than the twisting gesture to account for
slight differences in individual hand movement, but
still requires players to mimic the animation on
screen to continue game play.

3.3. Visual Interface

The design of the visual interfaces of mobile
devices must be optimized for mobile interaction,
taking into consideration the small screen space and
divided attention of the user [1]. The iPhone OS
addresses a main problem of screen clutter, caused by
multiple application windows open in a small space,
by setting the "one window per application" rule,
which also mandates that only one application

window can be displayed at a time. Though this
convention may initially seem limiting, Cocoa Touch
compensates by allows the developer to define a view
hierarchy, composed of layers of interactive display
content called views, anchored by one window. High-
resolution graphics and animations supported by the
iPhone OS, when coupled with the dynamic view
setup, expand opportunities for the development of
visually-appealing user interfaces.

In WapIt! the limits of this setup were explored.
Multiple layers of views and view controllers, Cocoa
Touch objects used to organize and manipulate views
of various types and sizes, were used to build the
colorfully animated window shown during gameplay.
Using the built-in frameworks of Cocoa Touch
allows developers to create vibrant graphics and
effects for any type of application, greatly improving
user’s enjoyment of the experience [1].

Using OpenGL ES for Turret Wars allowed us to
create a fully animated game that ran within a single
view. The initial graphics of the game were written
for desktop implementation and included
computationally expensive effects, like randomly
generated terrain composed entirely of particles. To
reduce the load on iPhone’s processor, the terrain was
changed to a solid object that only rendered
exploding particles upon detection of a collision with
another object, a change that greatly improved
performance on iPhone.

The methods used in developing the visual
interfaces in this project can be used to greatly
enhance existing and future mobile applications. On
devices like iPhone, developers with applications that
need to display multiple sets of information can feel
restricted by the one-window rule. Using the
animations and subview layering approach presented
in WapIt!, applications can move easily and
seamlessly through multiple views, displaying and
hiding them as necessary, which give developers the
flexibility to include many different sets of
information in the application if needed and to
choose the best way to layout each set. Developers
can also use OpenGL ES to create graphical versions
of dynamic information that might otherwise be hard

for the user to decipher, such as a program that
indicates the desirability of detected wireless
networks based on signal strength, number of current
users connected, and speed.

4. Future Work

The immediate future of mobile application
development is context-aware mobile computing, in
which applications can observe and process “the set
of environmental states and setting that either
determines an application’s behavior or in which an
application event occurs and is interesting to the
user” [2]. Current, commonly-used devices are
already enabled to send and receive information
context-aware applications would need: GPS,
Bluetooth, RFID (radio frequency identification),
wireless internet, and supporting hardware, all enable
a device to send and receive messages about its
current state, its user’s current state, and its
environment. In addition, Apple’s iPhone has sparked
a revolution among manufacturers of multifunction
mobile devices, inspiring revamped incarnations of
existing phones and PDAs that incorporate similar
technology and interface designs to improve usability
and increase consumer adoption [6].

Once FMWC devices achieve the necessary level
of pervasiveness needed to support a context-aware
infrastructure, the types of applications and uses for
this technology will be unimaginable. Professionals
could build smart buildings like the “Intelligent
Hospital” proposed by Cambridge University [5];
engineers would be able to access real-time
information about the entire inventory of parts
moving through the building process of a factory;
travelers can receive updates, reminders, and
sightseeing tips based on their location, travel
itinerary, and current company. In order for these
scenarios to become reality, applications
development must be greatly improved. The goal of
this paper was to present a design process with
example applications to assist future developers in
overcoming current design and usability challenges
with mobile application development. Hopefully,
using the processes, techniques, and open-source
code outlined, creating novel applications with
functionality beyond what is currently available will
be a feasible goal for all iPhone developers.

5. Acknowledgements

Special thanks to Ken Kopecky and Brandon
Newendorp, the graduate student mentors of this
project for all their help. Thanks to Dr. Eliot Winer
and Dr. Stephen Gilbert, the team’s faculty mentors,

and to Iowa State University’s Human-Computer
Interaction Graduate Program, Virtual Reality
Application Center, and Program for Women in
Science and Engineering for making this research
project possible. This research was performed as part
of an undergraduate research internship funded by a
grant from the National Science Foundation IIS-
0552522).

6. References

[1] S. Brewster, Overcoming the Lack of Screen Space on
Mobile Computers. Personal and Ubiquitous Computing,
n.6, 188-205, 2002.

[2] G. Chen and D. Kotz. A survey of context-aware
mobile computing research. Technical Report TR2000-381,
Dartmouth College, Computer Science, Hanover, NH, Nov
2000.

[3] G.H. Forman and J. Zahorjan, "The Challenges of
Mobile Computing," Computer, v. 27, n. 4, 38-47, 1994.

[4] L. Gorlenko , R. Merrick, No wires attached: Usability
challenges in the connected mobile world, IBM Systems
Journal, v.42 n.4, 639-651, October 2003.

[5] S. Mitchell , M. D. Spiteri , J. Bates , G. Coulouris,
Context-aware multimedia computing in the intelligent
hospital, Proceedings of the 9th workshop on ACM
SIGOPS European workshop: beyond the PC: new
challenges for the operating system, September 17-20,
2000, Kolding, Denmark.

[6] S. Sarker, J. D. Wells, Understanding mobile handheld
device use and adoption, Communications of the ACM,
v.46 n.12, December 2003.

[7] P. Tarasewich, Wireless devices for mobile commerce:
user interface design and usability, Mobile commerce:
technology, theory, and applications, Idea Group
Publishing, Hershey, PA, 2003.

[8] What is Engineering Problem-Solving? Dartmouth
Project For Teaching Engineering Problem Solving.
<http://engineering.dartmouth.edu/teps/default_what.is.eps.
html>

