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Abstract 

Marker-based motion tracking is currently a popular 
method being used in both feature films and video games 
to create realistic movements and special effects.  
However, this technique requires physical markers to be 
placed on a human. Multiple cameras track the markers, 
which often cannot be done in real-time.  Our work tracks 
a human hand without using any physical markers.  This 
is done by using a skin detection algorithm to recognize 
the hand, a curve approximation algorithm to smooth the 
outline of the fingers, and trigonometric analysis to 
uniquely identify each finger.  The user’s hand is able to 
control a 3D hand model that copies its movements on the 
computer screen.  This system uses a single camera, the 
ZCam developed by 3DV Systems. The ZCam is able to 
acquire the depth information as well as the 2D 
information in real-time. We realized finger tracking and 
mapped its motion to virtual 3D hand model in real time, 
albeit the motion was not realistically because only a few 
points are track for this study. We also created hand 
outline and found that more control could be realized the 
rotation around z axis could be up to 170 degrees. 
Because real hand motion was tracked, it can be used for 
numerous human computer interaction (HCI) 
applications. For example, we successfully applied finger 
tracking recognition to interact with 3-D water naturally 
and easily.  

Introduction 

Marker-based motion tracking is a system that uses 
physical markers that are placed on a human.  Typically, 
multiple cameras are used to capture the movement of the 
markers, which is later used by a computer to generate a 
3D model with the same movement as the body.  This 
method has become commonly used in both feature films 
and video games to aid in creating realistic special effects.  
Recently, it has been used in several popular films such as 
The Polar Express, Beowulf, and Benjamin Button.  It is 
also often used in video games to animate athletes and 
other characters in the game. As popular as this 
technology has become, it still has many disadvantages.  
The cameras only follow the motion of the markers, 
therefore the rest of the animation still needs to be done 
by a computer with enormous manual inputs, which can 
be a very time consuming process.  This existing system 
also requires a large number of cameras and equipment, 

which makes it very expensive.  Finally, many marker-
based systems do not allow real time visualizing of the 
data, and since real life performance does not always 
translate to the 3D model as expected, this can result in 
problems that require an entire scene to be re-captured.  
As a solution to these problems, methods of markerless 
motion tracking have started to be developed.  This would 
eliminate the need for physical markers as well as solve 
many of the other issues with marker-based tracking.  
However, few of these algorithms are able to accomplish 
finger detection since they are often limited in 3D motion. 

PPrreevviioouuss  WWoorrkk  

Over the past few years, markerless motion tracking 
technologies have advanced drastically.  Cheung et al 
developed a markerless motion tracking system by using 
shapes from silhouette images (Cheung et al. 2005).  This 
technology uses human kinematic models that are used to 
track the motion of the person.  However, their system 
does not work in real time.  Near real-time hand 
recognition with an IR time-of-flight camera has been 
accomplished by Breuer et al. (2007).  However, this 
system cannot track different movements of each 
individual finger.  Segen and Kumar (1999) used a light 
source, a camera, and shadows, to achieve real time 
motion tracking of the hand. They were also able to 
recognize gestures with two fingers such as point, click, 
etc.  However, shadow variations caused consistency 
issues due to the range of distance of the hand from the 
background.  Soutschek et al. (2008) also tracked hand 
gestures for a user interface, which they did by using a 
single time-of-flight camera.  The time-of-flight camera 
provides 3D image data, giving the depth as well as the 
color information at each point.  This provided more 
reliable depth information, but only used recognized 
specific gestures with markerless tracking.  A color-based 
method for tracking hand gestures was developed by 
Kang et al. (2008).  They used a color detection algorithm 
to locate the hand and contour analysis to find the 
fingertip.  This method is limited because it does not 
allow all five fingers to be located and differentiated.  
Holub and Nekolny (2009) developed a method 
combining skin and depth detection of the hand for 
American Sign Language recognition.  However, their 
algorithm does not recognize non-trained finger tracking 
movement. 



 

In this research, we are using a time-of
achieve real-time markerless motion tracking of a human 
hand, as well as each individual finger’s motions.  
motion tracking of markers on finger tips
train the 3D hand model. The markers are later removed
when the mathematical algorithm was developed to 
separate finger tips from a blob of skin color. 
calibration of color had to be made to distinguish markers 
and later skin color for increase robustness under different 
lighting conditions. Eventually, the markerless algorithm 
of tracking the hand was accomplished by using skin 
detection and a fast connected components algorithm to 
extract the hand from the background and remove 
background noise.  A curve approximation algorithm is 
used to smooth the outline of the finger contours and 
trigonometric analysis is used to uniquely identify each 
finger. Finally the tracked markerless 
transferred to drive the 3-D hand model.

 

Methods 

The goal of this project is to track 3D motion of a real 
hand to drive the virtual hand generated by a computer in 
real-time. Instead of using a physical device, 
haptical device, we use a computer vision technology and 
an imaging device to detect the hand motion and interact 
with the computer. The time-of-flight camera used was 
the ZCam and is show in Figure 1, and its specifications 
are shown in Table 1. 

 

Figure: 1 ZCam 

Resolution  320x240 at 30fps 

160x120 at 60fps      

Dimensions  85(W)x90(H)x60(D)mm

Depth Data Rate 30fps 

Operating Range  0.5-2.5m 

RGB Sensor format 1.3M 

Min. Res Depth  2 cm, depends on range 
window. 

Table 1: Specifications of ZCam
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ZCam 

The ZCam works by sending IR pulses to its field of 
view, creating active illumination
from the reflected light by
2 illustrates an example on how the ZCam attains its 
depth information about the scene.

Figure 2: Light being projected and reflected from 
camera (www.3dvsystems.com.il

There is a fast shutter which truncates returning light, in 
which the imaging sensor integrates more light from 
closer objects.  It produces a black and white v
which grey saturation represents the depth (G.J. Iddan 
Yahav 2000). The closer the object is to the camera the 
lighter the grey. In Figure
is in the bottom left corner of the 
noticeably lighter than the head behind it.

 

 

 

 

 

 

Figure: 3 ZCam output

SSkkiinn  aanndd  MMaarrkkeerr  DDeetteecc

First we used markers on the fingers to track their motion 
and train a 3D model, before 
to a markerless motion tracking 
train the model first with markers to distinguish finger 
tips then later take off the markers and use a mathematical 
algorithm developed to distinguish fingertips from skin
control the model. We capture the depth as well as the 
color information of a moving hand with
OpenCV and skin detection techniques 
the markers attached to the finger tips in real time.
Disparate color markers are attached ont
finger tips and palm. The markers that
of a hand are used to identify the
Holub et al. (2009) skin detection algo
language was incorporated to detect the marker and skin 
position from the 2D video images
to get a color spectrum for each 
used in developing the 3D model of the hand.

The ZCam works by sending IR pulses to its field of 
, creating active illumination to get depth information 

by the objects in the field. Figure 
illustrates an example on how the ZCam attains its 

the scene. 

 

Light being projected and reflected from 
www.3dvsystems.com.il) 

There is a fast shutter which truncates returning light, in 
which the imaging sensor integrates more light from 
closer objects.  It produces a black and white video, in 

represents the depth (G.J. Iddan and 
The closer the object is to the camera the 

Figure 3 below the depth information 
is in the bottom left corner of the four views. The hand is 

lighter than the head behind it. 

 

3 ZCam output 

ccttiioonn  aanndd  CCaalliibbrraattiioonn  

First we used markers on the fingers to track their motion 
before we transferred the 3D model 

to a markerless motion tracking algorithm. It was easier to 
the model first with markers to distinguish finger 

tips then later take off the markers and use a mathematical 
algorithm developed to distinguish fingertips from skin to 

capture the depth as well as the 
a moving hand with the ZCam.  

skin detection techniques are used to find 
the markers attached to the finger tips in real time. 
Disparate color markers are attached onto the hand at the 

palm. The markers that follow the motion 
used to identify the 3D motion of the points.  

skin detection algorithm for sign 
corporated to detect the marker and skin 

from the 2D video images. We use this algorithm 
to get a color spectrum for each marker color that was 
used in developing the 3D model of the hand. The 



spectrum is analyzed to determine if the pixel in a video 
image corresponds to a predetermined color we are 
attempting to find. In OpenCV, we represented a pixel 
color in the blue, green, and red (BGR) format, 
corresponding to blue, green, and red respectively. For 
processing each pixel in an image frame, a proportion of 
the colors were used (Holub et al 2009). Each color can 
have up to 255 in saturation value.  The values were 
normalized to accommodate for different light conditions 
by taking the sum of the BGR intensity values for each 
pixel. This produced a new scale from 0-1 for B, G, R, but 
since it is a proportion, analysis of only two colors on a 
plot is necessary. An example of the calculation is below. 

 

Example- For Red Marker Pigment 

Color Pigment Value 

Blue Value - 100  

Green Value- 100 

Red Value - 250 

Blue + Green + Red = 450 

Normalized Ratio in Color Spectrum 

Blue Ratio - 100/450 = .222 

Green Ratio - 100/450 = .222  

Red Ratio - 250/450 = .556 

 

Red and green were chosen arbitrarily, but any 
combination of two of blue, green, and red would produce 
the similar detection results, because the third color’s 
ratio would be implied from the proportion. Figure 4 
represents the red marker spectrum normalized in Matlab. 

 

Figure 4: Red marker spectrum 

Therefore, if the pixel’s color properties fall in the red 
range from .58 to .62 and green range from .195 to .225 it 

will be determined to be red. Figure 5 demonstrates the 
normalized pixel color saturation for skin. 

 

(a) Real skin image 

 

(b) Color sepectrum 

Figure 5: Skin with Matlab spectrum 

 

As can be seen by Figure 5 skin pigments have a broader 
spectrum than red. We used six colors which created 
overlap issues when color spectrums were similar. To 
achieve better skin detection, a color calibration is 
required. We developed the calibration algorithm for the 
ZCam to better distinguish the colors from one another. 
Skin is considered its own special color and calibration 
helped separate the color from other noise in the 
environment. Also, since the accuracy of the Holub et al. 
(2009)  method was not consistent if the light changes in a 
room condition, a calibration was needed to improve its 
performance. During the calibration, we converted the 
image from BGR color-space to the Hue Saturation and 
Value (HSV) color-space. We found that increasing raw 
saturation (S) value a little bit will increase the 
performance of the calibration, which was interesting. We 
believe that it is caused by the image sensor used in 
ZCam is not very good. After adjusting the S value, the 
color was converted to BGR color space for descriptive 
statistical analysis. We used descriptive statistics to 
analyze the pigment data for color calibration. Although 
the ZCam software comes with its own calibration, it does 
not specifically serve the purpose for us to distinguish 
colors. The calibration is based on finding outliers from a 
five number summary illustrated in Figure 6. 



 

FFiigguurree::  66  BBooxx  PPlloott 

This method is used because of its flexibility with a video 
sequence. We took the frame and color that the user 
wanted to calibrate and processed the frame with the user 
holding the indicated color or skin part to the camera. The 
pigments outside of the main color shown to the camera 
were ignored. This was accomplished by sorting
pixels to find the median, upper quartile  (
and the lower quartile (LQ lower 25%). 
quartile range (IQR) was found by subtracting
from the lower quartile. The IQR was 
“stretch” and added to the upper quartile range and 
subtracted by the lower quartile range to 
whiskers. Values outside those bounds were outliers
will not be considered in forming the detection range for 
each color. The “stretch” is traditionally 1.5.

 

This was proved to be an improvement over the Holub et 
al. (2009) method because of the flexibility in changing 
the stretch to accommodate different lighting conditions.

MMaarrkkeerrlleessss  FFiinnggeerr  TTrraacckkiinngg  AAllggoorrii

To implement marker-less motion tracking of a hand, we 
had to apply image processing methods to improve the 
quality of the image and mathematical algorithms to find 
the finger tips. We follow the following steps to find the 
finger tip motion: 

Step 1: First an image was obtained through the camera, 
cvThreshold() was used with a depth image to eliminate 
the background. Because we assume that the hand is 
separate from the body in depth, the depth information 
with OpenCV segmentation algorithm separates
from the result of the body, which make
tracking easier. 

 

This method is used because of its flexibility with a video 
We took the frame and color that the user 

processed the frame with the user 
skin part to the camera. The 

pigments outside of the main color shown to the camera 
were ignored. This was accomplished by sorting the 
pixels to find the median, upper quartile  (UQ top 75%), 

25%).  The Inter-
quartile range (IQR) was found by subtracting the upper 

 multiplied by the 
“stretch” and added to the upper quartile range and 
subtracted by the lower quartile range to get the bounds or 

Values outside those bounds were outliers, and 
considered in forming the detection range for 

each color. The “stretch” is traditionally 1.5. 
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because of the flexibility in changing 

lighting conditions. 
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quality of the image and mathematical algorithms to find 

We follow the following steps to find the 
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the result of the body, which makes future hand 

Step 2:  Skin tracking was used to grab the hand
grabbed an image, using the values calibrated earlier. 
Then we applied the "Fast Connected Components" filter. 
This algorithm goes through an image, and associates 
"blobs" based on color. For example, it would be able to 
differentiate between a blue blob and a red blob, isolating 
the two. The purpose of this filter was to get a better 
image of the hand, distinguishi
noises.  

Step 3: We compared the skin image to the depth image 
using cvAnd(), we were able to isolate the hand. 
applied a Gaussian smoothing filter (
further filter out the noise. Figure 7 shows the result 
before and after applying Gaussian filter. It caleraly 
shows the improvement of the using the filter

Figure 7: Before and After Gaussian Blur

 At this point we had a clean image of the hand. However, 
when we took the contour of 
cvFindContours() to find the contour of the hand and the 
fingers. Finger tip detection method relied on the 
curvature properties of the 

Step 4:  In order to simplify the problem, we used 
Douglas Peuker Approximation with the function 
cvApproxPoly() to reduce t
contour. This function works by picking the farthest 
vertices from each other to form a line. The next point 
picked is the point farthest from the line, while staying 
within the bounds of the precision parameter of the 
function. The third point picked is the point farthest from 
this new line formed. This process is repeated until there 
are no more points that can be picked, or there are no 
points that are within the bounds of the precision 
parameter. The end result was a contour c
around 10 points, as opposed

Figure 8: Douglas Peuker Approximation

 

Skin tracking was used to grab the hand. We 
grabbed an image, using the values calibrated earlier. 
Then we applied the "Fast Connected Components" filter. 

his algorithm goes through an image, and associates 
"blobs" based on color. For example, it would be able to 
differentiate between a blue blob and a red blob, isolating 
the two. The purpose of this filter was to get a better 
image of the hand, distinguishing it from background 

e compared the skin image to the depth image 
using cvAnd(), we were able to isolate the hand.  We 

smoothing filter (cvSmooth()) to 
further filter out the noise. Figure 7 shows the result 

after applying Gaussian filter. It caleraly 
shows the improvement of the using the filter.  

 

Figure 7: Before and After Gaussian Blur 

At this point we had a clean image of the hand. However, 
when we took the contour of our image with 

o find the contour of the hand and the 
detection method relied on the 

properties of the contours. 

In order to simplify the problem, we used the 
Douglas Peuker Approximation with the function 
cvApproxPoly() to reduce the amount of points in our 

This function works by picking the farthest 
vertices from each other to form a line. The next point 
picked is the point farthest from the line, while staying 
within the bounds of the precision parameter of the 

point picked is the point farthest from 
this new line formed. This process is repeated until there 
are no more points that can be picked, or there are no 
points that are within the bounds of the precision 

The end result was a contour consisting of 
around 10 points, as opposed to 200 in Figure 8. 

  

Douglas Peuker Approximation 



 

Step 5:  To detect fingers, the function atan2() was used 
to subtract angles between 2 adjacent points. If the 
difference was positive, it was a finger. An example is 
shown in figure 9. 

 

Figure 9: Trigonometry 

Step 6: However, to distinguish the fingers from each 
other, we needed to find the palm. This was done by 
taking all the points except the fingers, and averaging 
them. This gave us the center of the hand. By comparing 
where each finger was relative to the palm, each finger 
could be differentiated from each other, resulting in 
marker-less motion tracking of a hand.  

Step 7: To increase realism and detection robustness, the 
time series of each point is stored. Then the previous four 
points from past finger movement are averaged. 
Therefore, if in the next frame the finger tip is not 
detected there will still be a predicted location based on 
the other previous points. Also, this makes the movement 
from of the finger tip from one point to the next much 
smoother.        

33DD  HHaanndd  MMooddeell   

We created the 3D hand model that is controlled by the 
human hand using OpenGL.  It is made out of basic 
spheres and cylinders in OpenGL.  These shapes are then 
rotated and translated based on the position of the human 
hand in front of the camera.  The previous and current 
positions of each finger on the human hand in the x, y, 
and z directions are kept track of in the code.  This 
information is then used to find the difference between 
the current and previous position in each direction.  The 
arctangent of the x and y differences for each finger is 
then used to control how much each finger rotates in the x 
direction.  The difference in the y direction in each finger 
is also used to translate each joint when a finger bends.  
The difference in the z direction for each finger is used to 
control the rotation of how far each finger bends forward 
or back. The result is illustrated in Figure 10. 

 

 

Figure 10: 3D Model 

The differences in current and previous position are also 
used to translate the joint of each finger when it bends.  
For the mark on the center of the palm of the hand, the 
differences in the x, y, and z directions are used to control 
where the hand model should be in the display window 
and how it is moving within the display window. 
Although we were able to move the fingers, the bending 
was inconsistent and unstable with our hand. The finger 
detection algorithm we used only produced somewhat 
natural results in combination with mapping of the virtual 
hand model. One of the problems was it is only able to 
find a fingertip if the approximation had a sharp corner in 
the contour.  If the situation occurred where a finger was 
put down, it would not be able to track it anymore. If we 
could have built a better mathematical model to 
compensate for this limitation, it would have produced 
better results.  

We created a second hand model outline that had a more 
control stability. Also, that hand model was able to rotate. 
This model was created by taking using OpenGL 3D 
shapes to follow the outline of the hand. The model is 
illustrated in Figure 11 and 12. 

 

Figure 11: Hand model outline 

 



 

Figure 12: Hand model outline motion tracking two 
fingers 

The response on the hand model outline was much more 
accurate, which is what is demonstrated with its
reaction to change to two fingers. 

AApppplliiccaattiioonnss  

Because we were able to track finger tips without 
markers, we applied this concept to manipulate 3
geometries, such as water. With this water model, 
function would be called if we wanted the water to move. 
This function would be called if one of the fingertips was 
at a certain depth, and the water would appear to be 
touched at the appropriate point as shown in F
and 12.  

Figure 11: Fingers not touching water

 

Figure 12: Hand model outline motion tracking two 

model outline was much more 
accurate, which is what is demonstrated with its fluid 

Because we were able to track finger tips without 
markers, we applied this concept to manipulate 3-D 

With this water model, a 
function would be called if we wanted the water to move. 
This function would be called if one of the fingertips was 
at a certain depth, and the water would appear to be 

appropriate point as shown in Figure 11 

 

Figure 11: Fingers not touching water 

Figure 12: Fingers Touching Water

Results 

For Finger Tracking, we were successfully able to 
differentiate fingers from each other
algorithm only follows a limited range of motion
fingers going off-screen and full rotation of the fingers 
into a fist was not accomplished to a point of realism. 
Crossing the fingers also created an inaccurate motion
tracking. Having the fingers
in between, made it hard for 
fingers. The model best followed the hand with the palm 
facing the camera. Each finger was able to bend but not 
consistently to get accurate measurement. 
finger tips out of view of camera
model was lost. The second hand model masks lost 
control of finger tips 
Appearance is more fluid than the first model
the ability to move in 3D space accurately. 
hand model could make up to a 170
around the z-axis (If z-axis defined as going
ground to the ceiling). The depth response of the ZCam 
was a little unstable. The response can sometimes differ 
from day to the next even in the same location and 
daylight time. Calibration was accurat
20cm. If color was held to close to camera distortion from 
infrared feedback can give inaccurate results. The project 
focus was on motion tracking, therefore, the 
model was very simplistic in nature using 29 polygons to 
make analysis of successful tracking easier, decreasing 
realism of finger motion to the eye. The motion tracking 
of the hand worked best between .5
the camera.  

Conclusion 

Even with these limitations
improvement of finger tracking in real time
instability made off screen tracking of fingers difficult but 
manageable with proper filtering techniques. This simple 

 

Fingers Touching Water 

we were successfully able to 
from each other, although the current 

algorithm only follows a limited range of motion. The 
screen and full rotation of the fingers 

into a fist was not accomplished to a point of realism. 
Crossing the fingers also created an inaccurate motion 
tracking. Having the fingers close together with no space 

it hard for the model to distinguish 
best followed the hand with the palm 
Each finger was able to bend but not 

consistently to get accurate measurement. However, once 
of camera then control of the 

The second hand model masks lost 
 because of the 3D shapes. 

Appearance is more fluid than the first model because of 
the ability to move in 3D space accurately. The second 

could make up to a 170 degree rotation turn 
axis defined as going from the 

The depth response of the ZCam 
little unstable. The response can sometimes differ 

even in the same location and 
daylight time. Calibration was accurate between 15cm-
20cm. If color was held to close to camera distortion from 
infrared feedback can give inaccurate results. The project 
focus was on motion tracking, therefore, the first 3D 
model was very simplistic in nature using 29 polygons to 

s of successful tracking easier, decreasing 
realism of finger motion to the eye. The motion tracking 
of the hand worked best between .5-1.5 meters away from 

limitations, our method is still an 
improvement of finger tracking in real time. The depth 

screen tracking of fingers difficult but 
manageable with proper filtering techniques. This simple 



3D model created in this research could be improved to 
make a more realistic hand. In the future a mathematical 
solution can be developed to account for the full rotation 
of the hand. Furthermore, gesture recognition could be 
significantly increased with this technology. Because this 
technology is noninvasive, video game and movie 
applications can possibly used this method for interactive 
entertainment. 
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