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Abstract

The purpose of this research was to develop a
method for psychophysiological data acquisition
(i.e. EEG) while the subject was immersed in a
virtual environment. We specifically studied
learning the neural conditions of a First-Person
Shooter (FPS) game. The EEG data revealed
new activity that tracked target difficulty (91%,
p =.01), and that is typical of reinforcement
learning (69%, p = .02).
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1. Introduction

Andreassi (2006) defines psychophysiology as
the study of the relations “between
psychological manipulations and resulting
physiological responses measured in the living
organism.” The effect that digital games have
on a player's emotion and attention are
examples of physiological responses to
psychological manipulation.
Psychophysiological measurements therefore
can be used to quantify a player’s experiences
in a digital game. In Sweden at the Blekinge

Technical Institute, the GameScience Lab has
offered two classifications of
psychophysiological measurements. First,
context independent data is “data that can be
acquired with no regard to context or content
of the game.” Second, context dependent data
is “data that requires knowledge about key
game elements or game values.” Our study will
focus on the second approach using
electroencephalography (EEG), to obtain
electrical brain wave data elicited by key events
in the game.

Psychophysiological measurements represent
an improvement over previous methods for
recording player experiences, (i.e. the
guestionnaire method) Kennerly (2003) points
out one flaw of the questionnaire method. He
proposes that players do not accurately report
their own behavior in questionnaires, but rather
that a player’s description is a distorted report
that reflects the influence of psychological and
social forces. This phenomenon is referred to
as “subconscious distortion.” An additional
disadvantage of questionnaires is “perceptive
discrepancy” that occurs after the event, giving
participants the opportunity to forget important
details about their experience. Automated
“logging”, the monitoring and recording of
player-related activities during the game may
circumvent both these problems.

Existing video game software does not easily
accommodate real-time integration with EEG
recording. A solution requires the modification
of video game source code as well as software
development kits that allow access to
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psychophysiological data acquisition hardware
from custom applications. The alteration of
video game source code for the integration of
logging capability into digital games requires a
skilled digital game computer programmer.

The goal of this study was to integrate the EEG
data with the execution of a digital game. The
purpose of this integration was to measure EEG
data time-locked to specific events in a first
person shooter (FPS) game. These EEGs may
eliminate the obscuring effects of subconscious
distortion and perceptive discrepancy present
in survey studies. Instead researchers will be
left with a record of pre-selected events that
occur in the digital game followed by the brain
activity associated with these events.

We hope to implement this technique to record
error-related negativity (ERN) responses to
artificial intelligence (Al) player death events in
a FPS game. The FPS game we develop will
incorporate the violation of a learning condition
that we expect will elicit an ERN response. The
technique we use is advantageous for this
experiment because our data will record the
time of Al player deaths and the EEG data will
have time markers, allowing us to determine
the player response in the EEG data when an Al
player death occurs.

2. Literature Review

Gehring, Coles, Meyer, and Donchin (1990) first
reported the observation that an ERN appears
selectively on error trials in choice reaction time
experiments. The ERN takes the form of a
sharp, negative-going deflection of up to 10 pVv
in amplitude and is largest at electrodes placed
over the frontal central midline of the scalp. Its
onset is shortly after the onset of
electromyographic (EMG) activity detected in
the limb that is about to make an error, and it
peaks about 100 ms following its onset. In the
same year, Falkenstein, Hohnsbein, Hoormann,

and Blanke (1990) confirmed this observation,
independently.

Gehring, Goss, Coles, Meyer, and Donchin
(1993) reveal characteristics of the ERN that
make it possible for subsequent studies to
detect this phenomenon. In their study,
Gehring et al., varied the speed and accuracy
requirements placed upon the subject to create
three speed-accuracy conditions: a speed
condition, an accuracy condition, and a neutral
condition. Subjects received financial penalties
and bonuses in such a way as to emphasize
speed and/or accuracy. The authors found that
the ERN increased in amplitude from speed to
neutral to accuracy conditions confirming their
theory that the ERN is proportional to the
degree to which accuracy is important to the
subject.

Additionally, subjects of the study gave their
response to stimulus by squeezing zero-
displacement dynamometers with either their
left or right hand. Gehring et al. found the
pressure of the subject’s squeeze on erroneous
responses to be inversely proportional to the
amplitude of the ERN on the error trial. When
the record of a subject’s response to the same
stimulus was analyzed over time, the study
showed that the amplitude of the ERN on an
error trial was proportional to the probability
that the error would be followed by a correct
response to the same stimulus on the following
trial. An additional observation related to the
subject’s responses was that the amplitude of
the ERN on an error trial was inversely
proportional to the speed of the subject’s
response to the same stimulus on the
immediately following correct trial. Taking
these observations into consideration, the
authors were able to conclude that the ERN
“provides input to different compensatory
systems ... that can inhibit and correct the error
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as it occurs, as well as systems that control
response strategies, whose effects are evident
on future trials.”

Finally, the timing of the ERN (at the time of an
erroneous response) requires that the
information the error-detection system uses to
determine the accuracy of responses be
available when the response is initiated. This
requirement prevents the error-detection
system from functioning based on sensory or
proprioceptive information, but is consistent
with models in which the brain retains a neural
record of its motor commands which are used
for the functioning of the error-detection
system (Angel, 1976). These observations of
Gehring et al. (1990, 1993) make it possible to
recognize the ERN in psychophysiological data.

anterior cingulate
cortex
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gyrus

4 thalmus

spinal cord

Figure 1: Anterior Cingulate Cortex (Cromie, 2004)

In a study by Miltner et. al. (1997) the ERN was
measured while subjects performed a time
estimation task. The study found that following
feedback indicating an error, the event-related
brain potentials (ERPs) became more negative.
Equivalent dipole analysis procedures suggested
a source for the negative scalp potential in or
near the anterior cingulate cortex (ACC)
indicated in Figure 1. The authors noticed a
similarity between this feedback error-related
negativity (the feedback ERN) and the response

ERN. This similarity led the authors to propose
that both ERNs were associated with the same
neural and cognitive error detection process.

Nieuwenhuis et. al. (2004) noted that since the
report of Miltner et. al. (1997) much progress
has been made in understanding the neural
basis and functional significance of the feedback
ERN due to empirical studies inspired by the
reinforcement learning theory of the ERN (RL-
ERN theory). Nieuwenhuis et. al. (2004) outline
four predictions of the RL-ERN theory.

The first prediction of the RL-ERN theory holds
that the ERN reflects the outcome of an
evaluation of events along a good-bad
dimension, suggesting that the ERN should be
sensitive to any performance-related feedback
indicating favorable or unfavorable outcomes.
Nieuwenhuis et. al. (2004) and Gehring and
Willoughby (2002) were able to contribute the
observation that the ERN evaluates events
along an abstract good-bad dimension rather
than in terms of correctness or gain/loss.
Additionally, according to the RL-ERN theory,
the ERN system can base its good-bad
evaluations on different sources of information,
and the choice of source can be determined by
the context in which the information is
provided. Additionally, Holroyd et. al. (2004)
suggested on the basis of experiments
conducted by Yeung and Sanfey (2004) that it
might be possible that the monitoring system
responsible for the error detection process
scales the variance of possible outcomes so that
the extreme outcomes are weighted equally
irrespective of their absolute magnitude.

The second prediction of the RL-ERN theory
reviewed by Nieuwenhuis et. al. is that a more
negative ERN signal is elicited when the
monitoring system has to revise its reward
expectations for the worse. This is indicated
graphically in Figure 2. (Notice that the y-axis is
inverted.) The feedback ERN was in amplitude
elicited when the subject revised his/her
expectation for the worse. The theory further
predicts that the amplitude of the ERN is
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proportional to the size of the prediction error,
making the amplitude of the feedback ERN
dependent on the difference between the
actual outcome of a trial and the expected
outcome of that trial. The results of two studies
[Holroyd and Coles (2002) and Nieuwenhuis,
Ridderinkhof, et. al. (2002)] indicate that ERN
amplitude tracks the prediction error on a trial-
to-trial basis. Holroyd et. al. (2002) was able to
rule out the possibility that the feedback ERN is
sensitive to the absolute magnitude of the
reward.

— Negative feedback
== Positive feedback

Feedback ERN

feedback
onset

100 0 100 200 300 400 500 60D
Time (ms)
Figure 2: Feedback ERN Potential
(Nieuwenhuis, 2004)

Additionally, the RL-ERN theory predicts that
the ERN is elicited following the earliest
predictor of negative outcome. In accordance
with this prediction, Holroyd and Coles (2004)
[later verified by Nieuwenhuis et. al.(2004)]
showed that during the initial stages of learning
the ERN is large following the feedback and
absent following the response. As the
predictive value of the response is learned
however, the ERN propagates back from the
feedback to the response. In cases where the
mapping to the response is randomly
determined and hence cannot be learned the
ERN remains invariably high following the
feedback, and does not propagate back to the
response.

The final prediction of the RL-ERN theory is the
generation of the ERN in the anterior cingulate
cortex (ACC). All studies reviewed by
Nieuwenhuis et. al. are consistent with this final
prediction.

3. Methods

In our study, we developed a first person
shooter (FPS) digital game. The game was
developed using the Torque Game Engine
Advanced. The game implemented a 3 x 2
design that had three artificial intelligence (Al)
targets for the player to fire upon and two
reinforcement contingencies (Table 1). Our two
contingencies were differentiated by the level
of difficulty for the player to kill each target.
The three Al targets had a difficulty hierarchy in
which each target was progressively more
difficult to kill. All three targets were soldier
models in different colors. The red soldier was
the easiest, the white soldier was moderate,
and the blue soldier was the most difficult to
kill.

Type Red Alternate White Blue Alternate
Red Blue
Hits to Kill 1 10 5 10 1
Appearance | 100% 0% 100% 100% 0%
in Learning
Appearance 70% 30% 100% 70% 30%
in Test

Table 1: Design Matrix

Learning Phase

In the first stage of the experiment subjects
played the FPS game in order to learn the target
difficulty. This allowed the user to establish an
expectancy by learning how difficult it was to
eliminate each target. The test subject was
given unlimited ammo and health in order to
complete the task successfully. In this phase




Iowa State University

there were 60 trials (20 trials for each target)
and the Al targets were encountered
individually in a random order. The following Al
would not spawn until the preceding Al was
eliminated.

Test Phase

In the next stage of the experiment, the
contingencies were applied. The two
difficulty
hierarchies. The reinforcement contingencies

contingencies had opposite
were set up on a 70/30 basis. The thirty
percent violation of this expectancy was
sufficient enough to trigger the ERN from the
anterior cingulate cortex (ACC). For this portion
of the experiment, there were 180 trials (60
trials for each color, 15 of the 60 with alternate
health values for red and blue) in the game with
each trial containing each of the five different
Al's (Table 1).

Incorporation of EEG

Electroencephalography (EEG) was used to
measure event related potentials (ERP)
associated with reinforcement learning. Our
setup received information from the game data
and signals a trigger in the EEG software that
indicated the moment an Al was terminated.
An off signal was sent when the new soldier
spawns or the player completed a round of the
level.

4. Results

Target Difficulty

The first analysis examined the influence of
target kill difficulty on the ERP. As seen in
Figure 3, target difficulty was associated with a

linear decrease in ERP amplitude over the
central parietal and lateral frontal regions of the
scalp (91%, p = .01).
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Figure 3: ERP amplitude of target difficulty
(solid = red target; dotted = white target;
dashed = blue target)

Expectancy

The expectancy violation had three effects on
the ERPs. Between 0 and 200 ms after the kill,
the alternate red target elicited a medial frontal
negativity (MFN) over the frontal-central region
of the scalp. However, the MFN was nearly
absent for the alternate blue target (Figure 4;
69%, p =.02).

Red Blue

Figure 4: Medial Frontal Negativity in the first 200 ms
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Figure 5: ERP Amplitude over the FCz electrode
(dash dot = a. red target; dotted = blue target;
solid = a. blue target; dashed = red target)

Beginning around 500 ms after the Kkill, the
alternate red target was associated with slow
wave activity over the left central-parietal and
frontal-polar regions. In contrast, the alternate
blue target elicited slow wave activity over the
frontal-polar region (Figure 6; 78%, p = .001).
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Figure 6: Slow Wave 500-1000 ms
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Figure 7: ERP Amplitude over the Fpz electrode
(dash dot = a. red target; dotted = blue target;
solid = a. blue target; dashed = red target)

5. Discussion

The purpose of this study was to integrate a
digital game with EEG recordings in such a way
that recordings of neural activity could be time
locked to player-related activities in the game.
We found that the ERPs of the subjects in our
experiment differentiated between the levels of
difficulty to kill the three bots in our game.
Additionally, we found a medial frontal
negativity (MFN) response to the elimination of
an alternate red target, while the elimination of
an alternate blue target failed to elicit such a
response. This result is expected from current
knowledge of the MFN. An alternate red Kkill,
which is a negative outcome, is expected to
elicit a MFN; an alternate blue kill, a positive
outcome, does not have the same expectation.
Finally, our study revealed previously
undocumented slow wave activity associated
with the elimination of the alternate targets.
The slow wave findings for the alternate blue
target was consistent with many previous
positive reinforcement learning studies done on
animals.

Our study offers future ability of incorporating a
system that integrates the recordings of an EEG
and the activity of a player in a virtual
environment. A future goal of this research
may include the study of the slow wave findings
for the red target violation which is still
unexplained. However, a broader goal may be
to study other psychological phenomenon in
virtual environments.
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