
Interactive Multimodal Recognition 
Of Household Objects by a Robot 

 
Taylor Bergquist, Ugonna Ohiri, Conner Schenck,  

Mentors: Jivko Sinapov, Shane Griffith, and Alex Stoytchev 
 

Developmental Robotics Laboratory  
Iowa State University 

{knexer, uohiri, cschenck, jsinapov, griffith, alexs}@iastate.edu 
 

Abstract—This paper proposes a system for 
interactive multimodal recognition of household 
objects by a robot. Robots will need as many 
senses as possible in order to interact with these 
objects in our humanoid environments. A robot 
was equipped to observe both proprioceptive and 
auditory sensory input while performing five 
different behaviors on the objects in its 
environment. The robot learned from the sound 
produced by the object and from the change in 
joint torque during each interaction. The results 
show that an interactive approach to object 
recognition using both auditory and 
proprioceptive feedback performs better than 
auditory feedback alone. We conclude that a 
multimodal approach to object recognition is 
advantageous because one mode of sensory input 
may uncover important features that other modes 
cannot sense. 

 
I. INTRODUCTION 

 
Sound has been shown to be very useful for 

interaction-based object recognition tasks, but not all 
objects can be identifiable with that sensor alone. For 
example, when a robot interacts with a sponge, the 
sound of the sponge is so faint that the sound of the 
robot drowns it out. According to Sapp et al. [8], 
without multimodal input, even humans can be easily 
deceived  (i.e. the appearance and reality distinction). 
For example, people are often fooled by a bowl of 
fake fruit. This is especially true when people use 
only visual information. Only when a person receives 
proprioceptive feedback by touching or picking up 
the table ornament or by trying to take a bite do they 
realize that it’s fake. Presumably, a robot that is also 

 
 
Fig. 1. The upper-torso robot used in the experiments.  
 
 
equipped with proprioceptive feedback would 
perform better at object recognition tasks than a robot 
that collected a single mode of information alone. 

In a study done by Sapp et al., [8], toddlers were 
presented with a sponge that was deceptively painted 
as a rock. All of the toddlers believed that the object 
was a rock until the moment they touched it or picked 
it up. This shows that input from multiple modalities 
is very important for object recognition, and some are 
more important than others (in the case of the rock-
looking sponge, visual information could recognize 
the object faster, but proprioceptive feedback was 
found to be more reliable). Hence, robots that 
interactively learn to recognize objects using 
multimodal sensory input may be better equipped for 
the task. 

This paper builds on previous work on acoustic 
object recognition by an upper-torso humanoid robot 
by adding proprioceptive feedback. The hypothesis is 
that although object recognition is significantly better 
than chance with auditory information alone, 



performance will increase by adding proprioceptive 
data. The robot interacted with 50 objects using five 
different interactions (lift, shake, drop, crush, and 
push). The robot extracted and learned to recognize 
objects using a Self-Organizing Map. Using either 
modality alone, the robot was able to recognize 
objects significantly better than chance, but the robot 
performed best when it recognized objects using both 
modalities. The results support the conclusion that 
interaction-based object recognition increases in 
reliability not only as the number of interactions are 
increased, but also as robots are given more modes 
for perceiving the environment.  
 
 

II. RELATED WORK  
 

Relatively few studies have equipped robots with 
multiple modalities for the purpose of interactively 
learning to recognize objects. Most previous studies 
have relied visual or aural information alone. 
Furthermore, only a small number have included 
proprioceptive feedback.   

Although there has not been much work using 
multiple modalities for object recognition, there has 
been work where robots have used multiple 
modalities to interact with the environment in other 
ways. The work of Arsenio and Fitzpatrick [2] 
explored associating the periods of motion of objects 
in both the auditory and visual modalities. Similarly, 
the work of Nakamura et. al. [4] explored using 
one modality to infer the properties of an object in 
another modality (e.g. whether it would make noise 
when picked up after only looking at it). They found 
a much higher correlation between visual and haptic 
information than visual and auditory information. 
Additionally, Fitzpatrick et al. [1] also demonstrated 
that a robot could more easily delineate objects when 
using both visual and acoustic properties. Their 
approach developed periods in the visual field and 
tried to match it with the object’s acoustic field.  

Modayil and Kuipers [5] used visual and auditory 
dynamic readings to track amorphous objects, as well 
as those that had a well-configured shape. Essentially 
implementing two modalities increased the robot’s 
ability to track moving objects. The more senses 
present on a robot, the more informational pieces of 
an object.  

Adding the sense of proprioception helps to 
understand the physical features of an object. 
Montesano et al. [3] interactively learned about 
objects’ affordances using vision as a single 
modality. They argued it was rather difficult to learn 
several affordances without using all of our senses. 
However, they created a model for learning object 
affordances that used only one modality. The main  

 
 
 
Fig. 2.  The 50 objects used in the experiments (not 
drawn to scale). Identifying from left to right, First row: 
Arizona tea can, small plastic cup, large plastic cup, empty 
mountain dew bottle, full mountain dew bottle. Second 
row: macaroni shells, dumbbell, 2-by-4 wood block, 
football mug, blue ball. Third row: pbc pipe, watering can, 
nerf gun, closed plastic container, cowboy hat. Fourth row: 
white pills, nerf ball, shampoo bottle, Styrofoam cup, 
google water bottle. Fifth row: red water bottle, clear water 
jug, red container, plastic hemisphere ball, nerf football. 
Sixth row: toy light saber, rice pilaf, green water bottle, 
lego house, diet coke can. Seventh row: red bull can, peg, 
large screws, masking tape, brown pills. Eight row: grey 
cup, teddy bear, clear cup, detergent bottle, clear water 
bottle. Ninth row: metal tin, water noodle, small screws, 
picnic basket, purple cushion. Tenth row: black/white mug, 
white container, green container, 2-by-2 wood block, tissue 
box. 
 
characteristics of their model included: 1) capturing 
the relations between the robot’s actions, objects 
features and the observed effects; 2) learning through 
examination and interaction with the world; 3) 
distinguishing the features that are important in each 
affordance; 4) providing a common model for 
learning. They stated that one method of improving 



their approach would be to add multiple modalities of 
input.   

This study built on previous work by Sinapov and 
Stoytchev [6]. Previously the robot used only auditory 
information for object recognition and categorization. 
The robot was able to successfully recognize and 
categorize objects using a single modality of input. 
This paper shows that by incorporating 
proprioception, object recognition rates greatly 
increase. Eventually, the goal is to incorporate many 
modalities such that it is possible to learn to 
recognize objects using very few interactions.  
 
 

III. EXPERIMENTAL SETUP  
 

A. Robot 
 

This study used an upper-torso humanoid robot, 
equipped with a 7-DOF Barrett Whole-Arm 
Manipulator and a 3-finger Barrett Hand as its end 
effector (as shown in Fig. 1). The robot arm is 
programmed and controlled from a Linux PC at 500 
Hz over a CAN bus interface.  

The robot is equipped with a U853AW Hanging 
Microphone in its right chest. Sound input was 
recorded at 44.1 KHz using the Java Sound API over 
a 16-bit channel. The microphone’s output was 
directed through an ART Tube MP Studio 
Microphone pre-amplifier. 
 
 

B. Objects 
 

A set of 50 commonly used household objects 
was selected for these experiments. (see Fig. 2.) They 
included cups, water bottles, tissue boxes, etc. 
Objects were selected using three criteria: 1) it was 
graspable by the robot; 2) the object would not break 
when dropped; and 3) it would not damage the robot. 
Some of the objects had contents inside of them such 
as the box of screws and the capsule of pills, which 
distinguished them acoustically from other objects. 
The objects were also made of various substances 
such as metal, plastic, and wood. Each object was 
placed at a marked position at the center of the table 
within the robot’s reach.  

It is important to note that because objects with 
distinct shapes and substances were used, the robot 
was able to learn to find similarities among them by 
using both aural and proprioceptive data. Still even 
with a limited number of substances, the actual 
number of differences present is much larger – for 
example the plastic used to make a cup is much 
different than the plastic used to make a water bottle.  
 

                        BEFORE    AFTER 

  
     a) LIFT  

  
  b) SHAKE 

     
    c) DROP 

     
   d. CRUSH 

     
     e) PUSH 
 

Fig. 3. The upper-torso robot, as it performed five 
different behaviors in a single trial with the box of 
macaroni. The robot a) lifted and shook it, b) dropped it, c) 
crushed it, and d) pushed it. 
 
Such differences were expected to make object 
recognition possible.  
 

C. Behaviors   
 

The robot performed five different behaviors on 
each of the 50 objects: lift, shake, drop, crush, and 
push during each trial (see Fig. 3.). After grasping the 
object, the robot lifted it, shook it, dropped it, and 
pushed it, respectively. The robot completed these 
interactions using the Barrett WAM API. The crush 
interaction did not actually crush the objects. Usually,  



 
 
Fig. 4.  Audio signal processing. The top graph is the raw sound 
recorded for object 16 (watering can) when dropped. The bottom 
graph is the spectrogram of the discrete fourier transform. The 
horizontal axis denotes time and the vertical axis denotes the 33 
frequency bins. 
 

the downward force made the object fall over. Also, 
the push was relatively swift, which frequently 
caused the object to topple.  

The five behaviors were chosen to be able to 
examine the effects of object recognition using 
multiple modalities. An inspiration arose from the 
way humans interact with objects. For example, 
behaviors such as shake and drop would help them be 
able to acoustically tell the difference between a box 
of macaroni and a box of rice. Other behaviors such 
as lift and crush could tell whether they had an empty 
vs. a non-empty bottle of milk.  

 
 

IV. LEARNING METHODOLOGY  
 
A. Data Collection  
 
The robot performed 10 trials with each object for 

a total of 50 objects * 10 trials * 5 interactions = 
2500 data segments. For each interaction the object 
was placed in the same position and orientation in 
order to maintain consistency.  

 Data collection began when the trajectory for 
each interaction started and continued for a fixed 
amount of time, which ended after the interaction was 
over. After determining the length of each 
interaction, both the audio and proprioceptive data 

were automatically cropped in order to isolate the 
relevant data. This resulted in excess data for each 
interaction.  The proprioceptive data was recorded at 
500 Hz. The joint positions, torques, and hand 
positions were all recorded. No filtering was used on 
the audio. 

 
B. Feature Extraction 
 
The log-normalized Discrete Fourier Transform 

(DFT) was run on the audio using the SPHINX4 
natural language processing library with default 
parameters in order to get a good representation of 
the data. It split the audio into thirty-three frequency 
bins at each time slice, each bin containing the 
intensity of the corresponding frequency range. An 
example of a sound wave and the resulting DFT are 
shown in Fig. 4. 

The feature extraction algorithm used in this 
study was a Self-Organizing Map (SOM). It creates a 
predefined number of states, and then distributes 
them throughout the feature space to represent the 
data given a small portion of the data to train on. 
Then each data point in the set is converted to a 
sequence of states. A different instance of the same 
SOM was used for each data set (one for 
proprioception and one for audio). Due to limits on 
computing resources and time, only twenty percent of 
the data, sampled at random, was used to train each 
SOM.  

The SOM's used were of size 6 x 6, or contained a 
total of 36 nodes. The SOM for the audio data was 
trained with 33-dimensional input data (all the 
frequency bins at a given time slice). The SOM for 
the proprioceptive data was trained with 7-
dimensional input data (all the torque values at a 
given time slice). An example of the unfiltered and 
the filtered torque values can be seen in Fig. 5. The 

Growing Hierarchical SOM toolbox for Java was 
used to train the SOM's [8]. The SOM was trained 
using the default parameters for a non-growing 2-D 
single layer map. Fig. 6. gives a visual overview of 
the training procedure. 

 After training, each vector (time slice) of both the 
proprioceptive and the audio data were mapped to the 
state with the highest activation in their 
corresponding SOM's. This created a sequence of 
states for each data point. The state sequences were 
used for the rest of the algorithms. 
 



 
Fig. 5. The top graph shows the torque value for joint two during 
lift before filtering. First an outlier filter was applied to remove the 
random spikes in the data. All values outside of three standard 
deviations of a moving window were filtered. After a running 
average operation with a window size of ten was used to smooth 
the curve. The bottom graph shows the results of the filters.  

 

 
Fig. 6.   Illustration of the procedure used to train the SOM’s. 
Given a set of spectrograms for the audio data and a set of vectors 
for the proprioceptive data, column vectors were sampled at 
random from each and used to train each SOM. 

 
C. Learning Algorithms 
 
Two learning algorithms were used to solve the 

task of object recognition: k-Nearest Neighbor (a 
distance-based learning algorithm) and Multinomial 
Naïve Bayes (a Bayesian probabilistic model).  

 
1) K-Nearest Neighbor  
 
K-Nearest Neighbor (k-NN) is a distance-based 

algorithm [12], which does not build an explicit 
model of the training data. Instead, given a test data 
point, it simply finds the k closest neighbors and 
output a prediction, which is a smoothed average 
over those neighbors. In this study, k was set to 3.  

 The k-NN algorithm requires a distance measure, 
which can be used to compare the test data point to 
the training data points. Since each data point in this 
study is represented as a sequence over a finite 
alphabet, we used the Needleman-Wunsch global 
alignment algorithm [9], [10], which can estimate 
how similar two sequences are. While normally used 
for comparing biological or text sequences, the 
algorithm is applicable to other situations that require 
a distance measure between two strings. The 
algorithm requires a substitution cost to be defined 
over each pair of possible sequence tokens (i.e., 
letters): e.g., the cost of substituting ‘a’ with ‘b’. 
Since each token represents a state on a Self-
Organizing Map, the cost for each pair of tokens was 
set to the Euclidean distance between their 
corresponding SOM states in the 2-D plane. 

 
2) Multinomial Naïve Bayes  
 
The second learning algorithm used in this study 

was Multinomial Naïve Bayes (MNB), which falls 
into the family of probabilistic models. MNB is 
commonly used for sequence classification tasks and 
has found wide applicability in natural language 
processing bioinformatics, natural language 
processing, and more. [13] 

Under the MNB model, each sequence Si is 
represented as a vector di = (xi1, …, xi|V| ) of counts 

where V is the vocabulary and each xit ∈ {0, 1, 2, …}. 

Each xit indicates the number of times word wt occurs 
in Si. For example, if the sub-sequence “ab” appears 
50 times in the sequence, then xi’ab’ = 50. Given this 
representation, the task of the MNB model is to 
assign the correct object class label ci given an audio 
(or a proprioceptive) sequence Si. Given model 
parameters p(wt| cj) and class prior probabilities p(cj), 
MNB computes the most likely class for a data point 
di in the following way: 



 

 
 
where n(wt,di) is the number of occurrences of word 
wt in sequence Si as specified in the feature vector di. 
The probabilities p(wt|cj) and p(cj) are estimated from 
the available training data using maximum likelihood 
with a Laplacian prior (see [13] for details).  

To compute the feature vector di for each 
sequence Si, we used k-Gram features with k = 2. 
Hence, the vocabulary V consisted of all possible 
single and double letter combinations. With 36 states 
in the SOM, this corresponds to a feature vector of 
length 36+362=1332. 
 

D. Evaluation 
 

 Ten-fold cross-validation was used to evaluate 
the learning scheme. To do this, each trial was 
systematically selected to be the test data set while 
the other nine trials were used as the training set. The 
object recognition accuracy was averaged over all the 
objects for each interaction. When combining 
multiple object recognition rates (e.g. using more 
than one interaction or modality), the probabilities 
that the test object is each object were averaged, 
resulting in an overall probability for each object 
between interactions and modalities. This method is 
scalable to an arbitrary number of modalities and 
interactions.  

Because the k-Gram ignores much of the 
relationships in the sequences generated by the SOM 
(e.g. a temporal ordering longer than K), it was not 
expected to perform as well as global alignment and 
k-NN. It was included in this study as a baseline. 

 
V. RESULTS 

 
In the following experiments, the robot was tested 

on its ability to correctly predict the object in the 
interaction given the auditory information, the 
proprioceptive information, or both. That is, given 
novel information, the robot attempted to predict the 
object that generated the information.  The 
performance was evaluated using 10-fold cross-
validation: the 2500 data points are distributed evenly 
amongst 10 folds such that each fold contains exactly 
one data point for each object and interaction. During 
each iteration, nine of the ten folds are used for 
training the k-NN and Bayesian models while the 
remaining fold is used for testing.  The performance 

of the models is reported in terms of the percentage 
of correct predictions (the accuracy). Note, the 
accuracy is reported with only one interaction. It is 
expected that recognition rates would increase as the 
number of interactions used for recognition 
increased. Experiment 4 shows how object 
recognition performance increases with more 
interactions.  

 
A. Auditory Recognition  

 
    In the first experiment, the robot is given only 
auditory information.  This experiment is comparable 
to Sinapov et al. [11] work. Table I shows the 
recognition accuracy of the k-NN and Bayesian 
models [14] for this experiment.  The k-NN model 
was on average 51.6% accurate, while the Bayesian 
model was on average 38.24% accurate. The k-NN 
model was also more accurate than the Bayesian 
model for every interaction except for 'shake'.  The 
'drop' interaction was the most useful in both models, 
although the difference was much more pronounced 
in the Bayesian model.  The 'lift' behavior was the 
least useful of the five in both cases. 

The relative performance of the models makes 
sense.  The k-Gram feature extraction used by the 
Bayesian model discards all temporal relationships 
that are not between adjacent time slices.  This 
information can be very important, as the object may 
bounce or fall in a specific fashion.  It also makes 
sense that the 'drop' interaction was the most useful, 
as the sounds objects produced when they fell were 
very distinctive.  

Overall, the k-NN model performed well, but not 
as well as it did in Sinapov and Stoytchev’s [6] work. 
This is most likely due to the larger dataset in this 
work (50 objects instead of 36) and to the exclusion 
of the 'grasp' interaction in favor of the 'lift' 
interaction.  The 'lift' interaction contains a 
significant amount of proprioceptive information, but 
very little auditory information. 

 
B. Proprioceptive Recognition 
 

    In the second experiment, the robot is given only 
proprioceptive information.  Table II shows the 
recognition accuracy of the k-NN model and the 
Bayesian model for this experiment.  The k-NN 
model was on average 45.12% accurate, while the 
Bayesian model was on average 30.24% accurate. As 
before, the k-NN model was generally more accurate 
than the Bayesian model.  The 'crush' interaction was 
the most useful in both models.  The 'push' behavior 
was the least useful in the Bayesian model, while the 
'push' and 'shake' behaviors were essentially tied for 
least useful in the k-NN model. 



 
Fig. 7.  Object recognition rates with k-NN as the number of 
interactions utilized is varied from 1-5 with each combination of 
modalities.  
 

The recognition rates in this experiment were 
clearly better than chance for every interaction, and 
for a few - notably the 'crush' interaction in the k-NN 
model - they were very high.  It is clear that the 
model used in Sinapov and Stoytchev’s work [6] is 
effective for proprioceptive recognition as well as 
auditory recognition 

 
C. Multimodal Recognition 
 

    In the third experiment, the robot is given both 
proprioceptive and auditory information.  Table III 
shows the recognition accuracy of the k-NN model 
and the Bayesian model for this experiment.  The k-
NN model was on average 65.56% accurate, while 
the Bayesian model was on average 50.64% accurate. 
Both models benefited from the combination of 
multiple modalities, but the benefit was larger for the 
k-NN model.  The benefit appeared to be the greatest 
to those interactions which were equally reliable in 
the two modalities - if one was much more accurate 
than the other, combining their predictions yielded no 
discernible improvement over the more accurate of 
the two.  As a result, the majority of the improvement 
in average recognition rates comes from the robot's 
reliance on the more reliable modality in each case. 
 

D. Recognition with Multiple Interactions 
 

    In the fourth experiment, the robot's performance 
is evaluated when it is given multiple data points 
from different interactions with the same object.  In 
this scenario, the k-NN model calculated the 
probability that each data point belonged to each  

 
Table 1: Recognition Results using Audio  

 
Interaction Accuracy 

Multinomial Naïve Bayes   
Lift 17.2% 

Shake 39.8% 
Drop 71.4% 
Crush 23.6% 
Drop 39.2% 

Average 38.2% 
k-NN   

Lift 17.4% 
Shake 27.0% 
Drop 76.4% 
Crush 73.4% 
Push 63.8% 

Average 51.6% 
 
Table 2: Recognition Results using Proprioception  

 
Interaction Accuracy 

Multinomial Naïve Bayes   
Lift 36.8% 

Shake 17.0% 
Drop 21.8% 
Crush 65.2% 
Push 10.4% 

Average 30.2% 
k-NN   

Lift 64.8% 
Shake 15.2% 
Drop 45.6% 
Crush 84.6% 
Push 15.4% 

Average 45.1% 
 

Table 3: Recognition Results using Audio & 
Proprioception 

 

Interaction Accuracy 
Multinomial Naïve Bayes   

Lift 37.4% 
Shake 40.0% 
Drop 71.6% 
Crush 65.2% 
Push 39.0% 

Average 50.6% 
k-NN   

Lift 66.0% 
Shake 29.4% 
Drop 81.2% 
Crush 88.0% 
Push 63.2% 

Average 65.6% 



 
object class.  These probabilities were then summed, 
and the object class with the greatest resulting value 
was taken as the robot's prediction.  The number of 
interactions utilized was varied from 1 (the default 
setting, used to generate Tables I, II, and III) to 5 
(using all of the interactions). 
    Fig. 7. shows the recognition accuracy of the k-NN 
model as the robot uses information from multiple 
interactions.  As the robot uses information from 
more interactions, performance improves 
dramatically.  This figure also shows that the 
improvement seen when allowing the robot to use 
information from multiple modalities extends to the 
case where multiple interactions are used as well. 
When the robot uses only audio as a single modality 
[6] its recognition performance is 92.6%; but when 
the robot uses both the auditory and the 
proprioceptive information from all five interactions, 
its recognition performance jumps to 99.2%. 
 

VI. CONCLUSION/DISCUSSION  
 

This paper extended a learning framework, which 
had been previously applied to auditory information 
to another modality (proprioception) and combined 
the predictions of an auditory model and a 
proprioceptive model.  A large-scale experimental 
study evaluated the effectiveness of this extension 
and combination.  It was found that the methodology 
that had been used in previous work was effective on 
both auditory and proprioceptive information, and 
that the combination of information from the two 
modalities could substantially and consistently 
improve recognition accuracy. 

 The robot was evaluated on 50 household 
objects, using 5 exploratory behaviors: lift, shake, 
drop, crush, and push.  Recognition accuracy was fair 
with only one interaction and one modality, but 
jumped to 99.2% if both modalities and all five 
interactions were used.  The large number of objects 
indicates that both auditory and proprioceptive 
recognition scale well with the number of objects in 
the experiment. 

 There are several logical extensions to this work. 
First, the number of modalities used could be 
increased - vision could be added, for example.  It 
would even make sense to consider different 
representations of the same information to be 
different modalities.  Second, the proprioceptive and 
auditory information, even in cases where they are 
not sufficient to confidently predict the specific 
object involved in the interactions, could be very 
useful in determining some of the physical properties 
of the object, such as its material. 
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