
Copyright © 2006 AAAI

Abstract
Producing Intelligent Tutoring Systems (ITSs) is a la-
bor-intensive process, requiring many different skill
sets. A major component of an ITS, the cognitive
model, has historically required not only cognitive
science knowledge but also programming knowledge
as well. The tools described in this paper were created
to relieve this bottleneck in producing commercial-
quality ITSs.1

1 Introduction
ITSs are comprised of many different parts: an interface,
a learner-management system, the curriculum, a teacher
report system, and a cognitive model. It is this last piece,
the cognitive model, which enables the tutor to provide
help to the student, assisting when the student veers off
track and staying out of the way when the student is do-
ing the right thing. The focus of the work presented in
this paper is the design and creation of tools centered on
the cognitive model of an ITS. More specifically, we are
interested in authoring cognitive models appropriate for
model-tracing ITSs, where student input is checked on
every student interaction.

While there have been some great ITS successes (e.g.,
Anderson, et al., 1989, Koedinger et al., 1997, Graesser
et al., 2004, VanLehn et al., 2005), their development is a
costly endeavor. Studies have shown that students who
use an ITS to learn can master the material in a third less
time (Corbett, 2001). In controlled studies in school set-
tings, ITS-based curricula have been shown to be more
effective in preparing students for standardized tests
(Morgan & Ritter, 2002; also see
www.whatworks.ed.gov). However, estimates for the
creation of the tutored material range to 100 hours per
hour of instruction or more (Murray, 1999). To this point,
even with their promises of drastically reducing learning
time, there have been few commercial ITS successes, due
to this development barrier. For ITSs to become main-

This material is based upon work supported by the National Sci-
ence Foundation under Grant No. DMI-0441679.

stream and realize their full potential, the creation of
authoring tools is critical.

The research into authoring tools for ITSs is still quite
new (see Murray, Blessing, & Ainsworth, 2003 for a re-
view). In the past ITS researchers have had to design sys-
tems from scratch, using standard software development
packages to construct the system. This requires not only
knowledge of cognitive science in order to create the
cognitive model, but also a fair amount of programming
knowledge. Coupled with the domain knowledge re-
quirements, any sizable ITS system requires a team of
designers, each with a different skill set. While such team
design processes are essential, the interdependence of the
team can result in bottlenecks. If the cognitive scientist
requires programming assistance in order to get a piece
of work done, this slows down the effort. The goal we
have for this project, which we feel is plausible, is not to
enable an individual to create a whole ITS, but rather to
better assist the person taking on a particular role to do
his or her job better and more efficiently. A person who
desires to create a tutor for a particular domain (be it a
cognitive scientist or perhaps even a master teacher)
should not be required to be a programmer to make sub-
stantial progress in creating the basics of the cognitive
model.

The main challenge in this work is coming up with
representations that enable the cognitive model designer
to do their work without any programming and with a
clarity not offered by present systems. Furthermore, this
system is to be used in the context of creating and main-
taining cognitive models in commercially available tu-
tors. This work complements the research of Koedinger
and his colleagues (2004), who are investigating other
ways in which non-programmers can create cognitive
models for model-tracing tutors. The Cognitive Tutors
created by Carnegie Learning are in use in over 800
schools across the United States and by hundreds of
thousands of students. This places additional require-
ments on the tools with regards to robustness, maintain-
ability, and integration within a QA process.

In our conceptualization, the two main components of
a model-tracing ITS cognitive model are the object model
and the rule hierarchy. The object model represents the

Developing an Authoring System for Cognitive Models
within Commercial–Quality ITSs

Stephen Blessing Stephen Gilbert Steven Ritter

Department of Psychology
University of Tampa

401 W. Kennedy Blvd., Box Q
Tampa, FL 33606 USA

sblessing@ut.edu

Clearsighted, Inc.
2325 Van Buren Ave.
Ames, IA 50010 USA

stephen@clearsighted.org

Carnegie Learning, Inc.
1200 Penn Avenue, Ste. 200

Pittsburgh, PA USA
sritter@carnegielearning.com

Copyright © 2006 AAAI

pieces of the domain to be tutored, and this object model
is used by the rules to provide the tutoring to the student.
In the traditional approach to authoring model-tracing
tutors (e.g., Anderson & Pelletier, 1991), working mem-
ory elements correspond to the object model and a flat
representation of production rules correspond to our rule
hierarchy. The particulars of the internal architecture
used by us, referred to the as the Tutor Runtime Engine
(or TRE), has been described elsewhere (Ritter, Blessing,
& Wheeler, 2003). A set of tools has been created that
work on top of this architecture to provide a software
development kit (SDK) for cognitive models, and the
purpose of this article is to describe the main pieces of
this cognitive model SDK. The plan behind the SDK is to
apply concepts that have been successful in other aspects
of computer applications, such as tree views, hierarchies,
and point-and-click interfaces, to the design of model-
tracing ITSs. Development of such representations so
they are usable by non-programmers in this context is
difficult (to date, few ITS systems have employed them;
the VIVIDS system, Munro et al., 1996, is an exception
that has inspired part of the present work), but critical to
lowering the bar in terms of both time and money in the
creation of such systems. While nothing is automated yet,
these tools provide much more support and structure for
creating a cognitive model than what existed before
(which for Cognitive Tutor Algebra I was essentially a
blank document page).

2 Object Model
One of the main components of a cognitive model is the
declarative structure used to refer to the objects and their
properties within the domain being tutored. As such, a
main issue was the creation of such a tool appropriate for
a Cognitive Tutor. Traditionally this had been accom-

plished via code, requiring both programming and cogni-
tive science knowledge. The main accomplishment here
is in lowering the bar so that no programming knowledge
is required. Moving to more of an object-oriented, object
hierarchy based view is the key to cost efficiency in cre-
ating ITSs, both in terms of initial development and in
on-going maintenance.

A main concern in the design of not only this tool, but
also all of the tools that comprise the system, is that it
support the viewing and editing of the existing cognitive
models that have been produced by Carnegie Learning.
This would ensure that the tools were of sufficient value
to produce commercial-quality cognitive models. To this
end, all tools described here meet that goal.

The requirements for this particular tool are similar to
other existing tools (e.g., Protégé, an open-sourced on-
tology editor developed at Stanford University), in that
the basic functionality is to display and edit objects con-
sisting of attribute/value pairs. However, there are addi-
tional requirements for Cognitive Tutors that makes us-
ing any off-the-shelf or previously produced software
problematic. In particular, pre-defined object types exist
that have their own properties and behaviors. For exam-
ple there is a Goalnode object type (representing a stu-
dent’s subgoal in the problem), that has a set of prede-
fined properties, and attached to these Goalnode types is
a predicate tree inspector (the subject of the other main
tool, representing the rule hierarchy). Also, the values of
all properties are typed, and this has implications for
other aspects of the system in particular (e.g., the use of
Tutorscript, a topic to be discussed later).

Figure 1 shows the design of the tool. The left pane of
that design shows the currently loaded object hierarchy
(including objects and properties) and the right pane
shows information about the currently selected item in

Figure 1. Object Model Editor.

Copyright © 2006 AAAI

the left pane. There are provisions for adding, moving,
and deleting objects and properties, as well as maintain-
ing other aspects of the tree.

The final, working version follows quite closely from
this design. The full object hierarchy for Carnegie Learn-
ing’s existing algebra and middle school math tutors can
be viewed and edited using this tool (consisting of ap-
proximately 85 objects with 365 properties). In the past,
these hierarchies were viewable only in a standard code
window, and the definition of the various objects and
properties were often scattered across pages of code and
contained in several files. In addition, object hierarchies
for other tutors have been entered using this tool. The
superior visualization offered by the Object Model Editor
has encouraged more code-sharing between different tu-
tors, and has helped to identify and correct inefficiencies
in the representation of objects. We feel that using this

tool to enter, edit, and maintain object hierarchies for
Cognitive Tutors is a clear win for the design of the ob-
ject model of an ITS cognitive model. It has enabled us
to find inefficiencies within existing code and to allow
non-cognitive scientists to create cognitive models.

3 Rule Hierarchy
In addition to the object model, the other main piece of a
cognitive model specifies the goal-state behaviors, such
as right answers, hints, and just-in-time-messages—the
backbone of a model-tracing tutor. The task is to design
an editor for these rules, hints, and actions. As previously
stated, one goal was that the viewer needed to display the
existing rule sets that Carnegie Learning has developed
(as a reference, Carnegie Learning’s Algebra I cognitive
model has approximately 500 rules).

Again, the main challenge is to come up with a repre-

Figure 2. Predicate Tree Schematic.

Figure 3. Predicate Tree Inspector.

Copyright © 2006 AAAI

sentation that is natural and understandable by non-
programmers. Like with the object model, the traditional
method of creating these rules was through code. How-
ever, we developed a non-code based representational
scheme for these rules. The rules used by the cognitive
modeling system share some features in common with the
EPAM system (Simon & Feigenbaum, 1984), in that the
predicates for the rules form a hierarchical tree, with
most of the actions appearing at the leaf nodes. The
nodes contain the tests (predicates) used to determine the
behavior of the system. This behavior is dictated by how
properties of the problem are coded in the object hierar-
chy and the subsequent actions of the student.

Figure 2 shows a schematic diagram of one of one of
these trees. Each tree is particular to one type of goal
state, and so the tests apply only to that goal state. For
example, one test, or predicate, within the algebra cogni-
tive model is if the cell-type (a property) of a worksheet-
cell (a goalnode) is “expression.” Later predicates within
the tree test whether the expression cell is of the form
“mx” or “mx+b”. These properties are determined when
the problem is authored. As seen in the schematic, the
cognitive model is structured around these kinds of
predicates. When a given predicate is satisfied, the stu-
dent may see hints or “JITs” (just-in-time feedback mes-
sages). However, not all properties that are important for
tutoring can be determined at authoring time, so some
properties must wait until the student is in the midst of
solving the problem, or at runtime. In the diagram, “RC”
notates a Runtime Condition and “SIRC” notates a Stu-
dent Input Runtime Condition. A Runtime Condition
might, for example, specify that the hint to be given de-
pends on whether the student has already completed part
of the problem. A just-in-time message is triggered by
SIRCs, because they depend on what the student entered.

Figure 3 shows the design for this Predicate Tree In-
spector. The upper left pane of the design shows the
predicate tree hierarchy for a particular goalnode. The
upper right pane shows the full set of predicate tests for
the selected node at the left, and the lower right pane
shows the hints, just-in-time messages, and other tutoring
actions attached at this node. Finally, the lower left pane
shows the Action Catalog, to be used for repeated tutor-
ing actions within a tree. As desired, the Predicate Tree
Inspector has the functionality to view all the rules and
all their parts that comprise Carnegie Learning’s Algebra
I cognitive model.

3.1 Rule Editor
As shown in Figure 2, the nodes contain one or more
predicates that test certain aspects of the current state of
the problem. This is akin to a typical production that con-
tains working memory tests in a rule-based system. As

with the Object Model editor, the challenge here is to
make such a representation understandable and usable by
a non-programmer. The original Algebra I rules were
built using a toolkit constructed on top of Common Lisp
(the Tutor Development Kit, Anderson & Pelletier,
1991). While usable for simple tutors by non-Lisp pro-
grammers, the TDK still had a deep learning curve.
 What is required is a system that lays bare what is
needed to produce statements such as “give this help
message when the student is in an expression cell of the
form mx+b and the problem involves money” and “pro-
vide this just-in-time help message if the student enters
an expression but leaves off the intercept.” In addition to
providing an intuitive way to enter such expressions
when required, the interface needs to guide the author in
creating the syntax for each part of the predicate and pro-
vide templates for entering help, just-in-time-messages,

and the other actions that can be performed by the tutor.
Figure 4. Rule Editor.

 The language that is used in these predicates and in
other parts of the SDK to refer to a working memory
state is called Tutorscript. We modeled this scripting lan-
guage on those found in other object-oriented environ-
ments (e.g., Applescript in the Macintosh operating sys-
tem). It provides an English-like way for non-
programmer authors to refer to the needed aspects of the
problem state within the rule system.

3.2 Tutorscript Editor
Tutorscript provides a way for the author to refer to the
object hierarchy within the constraints of the rules used
by the cognitive model. Therefore, it is used not only in
the predicates used within the rules, but also in the hint
and just-in-time message templates, as well as other as-
pects of the authoring system. In addition to providing a
way for authors to refer to properties within the object
model, the syntax of Tutorscript also provides simple
if/then clauses, arithmetic, and formatted output.

Copyright © 2006 AAAI

The only provision within the older authoring tools for
Tutorscript was for the author to type out the reference.
This placed a burden on the author to remember the syn-
tax and the route through object space to reach the de-
sired property. This added greatly to the programming
aspect of what should be a cognitive modeling task.

Designing a Tutorscript editor is a challenge because a
Tutorscript phrase is read from left to right, but is more
properly constructed from right to left. A piece of Tutor-
script like displayed in Figure 5, “item n of columns of
worksheet of problem of tutor [of label-node]” starts with
all the properties accessible from the goalnode label-
node, of which tutor is one. The tutor property itself re-
solves to an object which has certain properties, of which
problem is one. The Tutorscript phrase is built up like
that until the author finds a path to the desired property,
in this case item n (the author will need to indicated
which exact item) of a list of worksheet-column object.

As can be seen in Figure 5, our design calls for the Tu-
torscript phrase to be built from the bottom up, with all
the properties of the base goal-node (label-node in this
case) selectable from a pop-up menu. Once a selection is
made, the appropriate properties for the next part of the
Tutorscript phrase appears in a pop-up menu above the
initial menu, and so on until the author arrives at the ter-
minal property. The dialog also includes the other fea-
tures of Tutorscript such as arithmetic and simple if-then
statements. The Tutorscript editor is available every-
where in the system that Tutorscript is allowed, which
includes predicates, hint messages, just-in-time-
messages, and other actions taken by the tutor.

4 Usable by Non-programmers
The main concern with this work is if the underlying rep-
resentation used to represent the objects and rules are
understandable by non-programmers (and indeed, even
by non-cognitive scientists). Towards that end, a basic
study that assessed the understandability of the object

and rule model was conducted. A major risk associated
with this project was not that the resulting tools could not
author meaningful cognitive tutors, but rather that the
tools would be too complex for a non-cognitive modeler
to understand. An experiment was conducted to ensure
that the representations developed for the object and rule
viewers could be used and understood by people unfamil-
iar with cognitive models.

Sixteen undergraduate participants at a middle-sized
liberal arts university took part in the study. These stu-
dents had no computer or cognitive science background.
Participants were instructed in one of two ways to repre-
sent information. One of these ways was more consistent
with the older implementation of the authoring system
(that is, a flat, programming-based representation), and
the other way was more consistent with the representa-
tion embodied in the tools discussed above. Participants
were first given instruction in objects, properties, and
inheritance, as well as representing rules relating objects
and actions. They were then given a test of their under-
standing. The instruction used examples of an animal
hierarchy for objects, and a banking example for rules.
The testing was designed to show whether students could
generalize from their instruction using animals and bank-
ing to a new, foreign domain using similar representa-
tions. The new domain was based on the existing algebra
system developed by Carnegie Learning for both objects
and rules. The questions asked were ones of identifica-
tion, such as “What are the inherited properties of this
object?” “What are the children of this object?” and “Un-
der what conditions will this message be displayed?”

Across both conditions, the self-paced instruction time
was minimal to get them up to speed, amounting to less
than 16 min. There were no significant differences be-
tween the two conditions in terms of time or accuracy
(average of 75.0%), and all but one of the participants
was significantly above chance in accuracy. The one par-
ticipant not above chance was in the flat representation
condition. We take this as evidence that these representa-

Figure 5. TutorScript Editor.

Copyright © 2006 AAAI

tions are readily learnable and usable by non-cognitive
scientists and non-programmers. While we expected a
stronger difference between the two conditions, with the
hierarchy requiring less time, a difference might not arise
until participants have to produce cognitive models, fix
errors, and interact more deeply with the representations.
Furthermore, the presentation of the information may not
have had a high enough fidelity or been intuitive enough
for the participants to accurately gauge differences.

A second result comes from a final task in which par-
ticipants were shown a short narrative about objects,
properties, and rules in the knowledge domain of cell
phones and calling plans and asked to draw a representa-
tion of this domain freehand, based on the instruction and
testing they had received. All but 2 of the 16 subjects
produced a representation that was tree-based, like Figure
2, as opposed to using a flat representation or the hierar-
chical file-explorer-style representation (Figure 3). This
suggests that a tree structure might be a natural represen-
tation for representing hierarchies. Future work will be
needed to determine whether tree diagrams work well in
a computer-based context both for representing and un-
derstanding hierarchical information.

5 The Rest of the ITS Authoring System
What we described here has been the authoring system
for the cognitive model. In order to create a complete ITS
system, many more pieces must be in place: the interface,
the curriculum, and problems that fit within the curricu-
lum. We are at various stages of work on these pieces.
Ritter et al. (1998) described a problem authoring system
for algebra problems. The tools described here have a
simple mechanism for inputting the problem attributes
problem, but we advocate the creation of special author-
ing tools for complex problems to open up the problem
authoring process to a wider audience, including stu-
dents. We have an in-house curriculum authoring system
that enables problems to be put into sections so that tutor
has the information available to provide a curriculum to
the student. The curriculum authoring tool also allows the
author to pick and arrange the skills that the students will
learn. Finally, we currently have a simple interface
toolkit available in java that allows for the construction
of interfaces that can communicate to the tutor backend
(described in Ritter & Koedinger, 1996). We envision a
tutor GUI construction kit, but that work is in the future
(the system described by Koedinger et al. does have such
a provision).

6 Conclusions
The work described here is still ongoing, but the accom-
plishments have been sufficient for our team to do real
work with the tools. Carnegie Learning’s current Algebra
I system is represented successfully using these tools. A
current project is the re-implementation of the geometry
cognitive model. While there is some overlap, geometry
offers enough difference for us to gain perspective as to

what the missing pieces are in the current implementa-
tion. Next steps include widening the domains of ITSs
constructed using these tools, and integrating the various
components of the total ITS authoring system.

7 References
Anderson, J. R. & Pelletier, R. (1991). A development

system for model-tracing tutors. In Proceedings of
the International Conference of the Learning Sci-
ences, 1-8. Evanston, IL.

Anderson, J. R., Conrad, F. G., & Corbett, A. T. (1989).
Skill acquisition and the LISP Tutor. Cognitive Sci-
ence, 13, 467-506.

Corbett, A.T. (2001). Cognitive computer tutors: Solving
the two-sigma problem. In the Proceedings of the
Eighth International Conference of User Modelling.

Feigenbaum, E., & Simon, H.A. (1984). EPAM-like models
of recognition and learning. Cognitive Science, 8, 305-
336.

 Graesser, A.C., Lu, S., Jackson, G.T., Mitchell, H.,
Ventura, M., Olney, A., & Louwerse, M.M. (2004).
 AutoTutor: A tutor with dialogue in natural lan-
guage. Behavioral Research Methods, Instruments,
and Computers, 36, 180-193.

Koedinger, K. R., Aleven, V., Heffernan, N., McLaren,
B. M., & Hockenberry, M. (2004). Opening the Door
to Non-Programmers: Authoring Intelligent Tutor
Behavior by Demonstration. In the Proceedings of
the Seventh International Conference on Intelligent
Tutoring Systems.

Morgan, P., & Ritter, S. (2002). An experimental study
of the effects of Cognitive Tutor® Alegbra I on stu-
dent knowledge and attitude.
[http://www.carnegielearning.com/research/research
_reports/morgan_ritter_2002.pdf].

Murray, T. (1999). Authoring Intelligent Tutoring Systems:
An analysis of the state of the art. International Journal
of AI in Education (1999), 10, 98-129.

Murray, T., Blessing, S., & Ainsworth, S. (2003).
Authoring tools for advanced technology educational
software. Kluwer Academic Publishers.

Munro, A., Johnson, M.C., Pizzini, Q.A., Surmon, D.S.,
& Wogulis, J.L. (1996). A tool for building simula-
tion-based learning environments. In Simulation-
Based Learning Technology Workshop Proceedings,
ITS96.

Ritter, S., & Blessing, S. B., Wheeler, L. (2003). User mod-
eling and problem-space representation in the tutor run-
time engine. In P. Brusilovsky, A. T. Corbett , & F. de
Rosis (Eds.), User Modeling 2003 (pp. 333-336).
Springer-Verlag.

Ritter, S., Anderson, J., Cytrynowicz, M., & Medvedeva, O.
(1998) Authoring Content in the PAT Algebra Tutor.
Journal of Interactive Media in Education, 98 (9).

Ritter, S., & Koedinger, K. R. (1996). An architecture for
plug-in tutor agents. Journal of Artificial Intelligence in
Education, 7, 315-347.

VanLehn, K., Lynch, C., Schulze, K., Shapiro, J.A.,
Shelby, R., Taylor, L., Treacy, D., Weinstein, A., &
Wintersgill, M. (2005). The Andes physics tutoring
system: Lessons learned. International Journal of
Artificial Intelligence and Education, 15(3).

