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Abstract 
Producing Intelligent Tutoring Systems (ITSs) is a la-
bor-intensive process, requiring many different skill 
sets. A major component of an ITS, the cognitive 
model, has historically required not only cognitive 
science knowledge but also programming knowledge 
as well. The tools described in this paper were created 
to relieve this bottleneck in producing commercial-
quality ITSs.1 

1 Introduction 
ITSs are comprised of many different parts: an interface, 
a learner-management system, the curriculum, a teacher 
report system, and a cognitive model. It is this last piece, 
the cognitive model, which enables the tutor to provide 
help to the student, assisting when the student veers off 
track and staying out of the way when the student is do-
ing the right thing. The focus of the work presented in 
this paper is the design and creation of tools centered on 
the cognitive model of an ITS. More specifically, we are 
interested in authoring cognitive models appropriate for 
model-tracing ITSs, where student input is checked on 
every student interaction. 

While there have been some great ITS successes (e.g., 
Anderson, et al., 1989, Koedinger et al., 1997, Graesser 
et al., 2004, VanLehn et al., 2005), their development is a 
costly endeavor. Studies have shown that students who 
use an ITS to learn can master the material in a third less 
time (Corbett, 2001). In controlled studies in school set-
tings, ITS-based curricula have been shown to be more 
effective in preparing students for standardized tests 
(Morgan & Ritter, 2002; also see 
www.whatworks.ed.gov). However, estimates for the 
creation of the tutored material range to 100 hours per 
hour of instruction or more (Murray, 1999). To this point, 
even with their promises of drastically reducing learning 
time, there have been few commercial ITS successes, due 
to this development barrier. For ITSs to become main-
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stream and realize their full potential, the creation of 
authoring tools is critical. 

The research into authoring tools for ITSs is still quite 
new (see Murray, Blessing, & Ainsworth, 2003 for a re-
view). In the past ITS researchers have had to design sys-
tems from scratch, using standard software development 
packages to construct the system. This requires not only 
knowledge of cognitive science in order to create the 
cognitive model, but also a fair amount of programming 
knowledge. Coupled with the domain knowledge re-
quirements, any sizable ITS system requires a team of 
designers, each with a different skill set. While such team 
design processes are essential, the interdependence of the 
team can result in bottlenecks. If the cognitive scientist 
requires programming assistance in order to get a piece 
of work done, this slows down the effort. The goal we 
have for this project, which we feel is plausible, is not to 
enable an individual to create a whole ITS, but rather to 
better assist the person taking on a particular role to do 
his or her job better and more efficiently. A person who 
desires to create a tutor for a particular domain (be it a 
cognitive scientist or perhaps even a master teacher) 
should not be required to be a programmer to make sub-
stantial progress in creating the basics of the cognitive 
model.  

The main challenge in this work is coming up with 
representations that enable the cognitive model designer 
to do their work without any programming and with a 
clarity not offered by present systems. Furthermore, this 
system is to be used in the context of creating and main-
taining cognitive models in commercially available tu-
tors. This work complements the research  of Koedinger 
and his colleagues (2004), who are investigating other 
ways in which non-programmers can create cognitive 
models for model-tracing tutors. The Cognitive Tutors 
created by Carnegie Learning are in use in over 800 
schools across the United States and by hundreds of 
thousands of students. This places additional require-
ments on the tools with regards to robustness, maintain-
ability, and integration within a QA process. 

In our conceptualization, the two main components of 
a model-tracing ITS cognitive model are the object model 
and the rule hierarchy. The object model represents the 
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pieces of the domain to be tutored, and this object model 
is used by the rules to provide the tutoring to the student. 
In the traditional approach to authoring model-tracing 
tutors (e.g., Anderson & Pelletier, 1991), working mem-
ory elements correspond to the object model and a flat 
representation of production rules correspond to our rule 
hierarchy. The particulars of the internal architecture 
used by us, referred to the as the Tutor Runtime Engine 
(or TRE), has been described elsewhere (Ritter, Blessing, 
& Wheeler, 2003). A set of tools has been created that 
work on top of this architecture to provide a software 
development kit (SDK) for cognitive models, and the 
purpose of this article is to describe the main pieces of 
this cognitive model SDK. The plan behind the SDK is to 
apply concepts that have been successful in other aspects 
of computer applications, such as tree views, hierarchies, 
and point-and-click interfaces, to the design of model-
tracing ITSs. Development of such representations so 
they are usable by non-programmers in this context is 
difficult (to date, few ITS systems have employed them; 
the VIVIDS system, Munro et al., 1996, is an exception 
that has inspired part of the present work), but critical to 
lowering the bar in terms of both time and money in the 
creation of such systems. While nothing is automated yet, 
these tools provide much more support and structure for 
creating a cognitive model than what existed before 
(which for Cognitive Tutor Algebra I was essentially a 
blank document page).  

2 Object Model 
One of the main components of a cognitive model is the 
declarative structure used to refer to the objects and their 
properties within the domain being tutored. As such, a 
main issue was the creation of such a tool appropriate for 
a Cognitive Tutor. Traditionally this had been accom-

plished via code, requiring both programming and cogni-
tive science knowledge. The main accomplishment here 
is in lowering the bar so that no programming knowledge 
is required. Moving to more of an object-oriented, object 
hierarchy based view is the key to cost efficiency in cre-
ating ITSs, both in terms of initial development and in 
on-going maintenance. 

A main concern in the design of not only this tool, but 
also all of the tools that comprise the system, is that it 
support the viewing and editing of the existing cognitive 
models that have been produced by Carnegie Learning. 
This would ensure that the tools were of sufficient value 
to produce commercial-quality cognitive models. To this 
end, all tools described here meet that goal. 

The requirements for this particular tool are similar to 
other existing tools (e.g., Protégé, an open-sourced on-
tology editor developed at Stanford University), in that 
the basic functionality is to display and edit objects con-
sisting of attribute/value pairs. However, there are addi-
tional requirements for Cognitive Tutors that makes us-
ing any off-the-shelf or previously produced software 
problematic. In particular, pre-defined object types exist 
that have their own properties and behaviors. For exam-
ple there is a Goalnode object type (representing a stu-
dent’s subgoal in the problem), that has a set of prede-
fined properties, and attached to these Goalnode types is 
a predicate tree inspector (the subject of the other main 
tool, representing the rule hierarchy). Also, the values of 
all properties are typed, and this has implications for 
other aspects of the system in particular (e.g., the use of 
Tutorscript, a topic to be discussed later). 

Figure 1 shows the design of the tool. The left pane of 
that design shows the currently loaded object hierarchy 
(including objects and properties) and the right pane 
shows information about the currently selected item in 

Figure 1. Object Model Editor. 
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the left pane. There are provisions for adding, moving, 
and deleting objects and properties, as well as maintain-
ing other aspects of the tree. 

The final, working version follows quite closely from 
this design. The full object hierarchy for Carnegie Learn-
ing’s existing algebra and middle school math tutors can 
be viewed and edited using this tool (consisting of ap-
proximately 85 objects with 365 properties). In the past, 
these hierarchies were viewable only in a standard code 
window, and the definition of the various objects and 
properties were often scattered across pages of code and 
contained in several files. In addition, object hierarchies 
for other tutors have been entered using this tool. The 
superior visualization offered by the Object Model Editor 
has encouraged more code-sharing between different tu-
tors, and has helped to identify and correct inefficiencies 
in the representation of objects. We feel that using this 

tool to enter, edit, and maintain object hierarchies for 
Cognitive Tutors is a clear win for the design of the ob-
ject model of an ITS cognitive model. It has enabled us 
to find inefficiencies within existing code and to allow 
non-cognitive scientists to create cognitive models. 

3 Rule Hierarchy 
In addition to the object model, the other main piece of a 
cognitive model specifies the goal-state behaviors, such 
as right answers, hints, and just-in-time-messages—the 
backbone of a model-tracing tutor. The task is to design 
an editor for these rules, hints, and actions. As previously 
stated, one goal was that the viewer needed to display the 
existing rule sets that Carnegie Learning has developed 
(as a reference, Carnegie Learning’s Algebra I cognitive 
model has approximately 500 rules). 

Again, the main challenge is to come up with a repre-

Figure 2. Predicate Tree Schematic. 

Figure 3. Predicate Tree Inspector. 
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sentation that is natural and understandable by non-
programmers. Like with the object model, the traditional 
method of creating these rules was through code. How-
ever, we developed a non-code based representational 
scheme for these rules. The rules used by the cognitive 
modeling system share some features in common with the 
EPAM system (Simon & Feigenbaum, 1984), in that the 
predicates for the rules form a hierarchical tree, with 
most of the actions appearing at the leaf nodes. The 
nodes contain the tests (predicates) used to determine the 
behavior of the system. This behavior is dictated by how 
properties of the problem are coded in the object hierar-
chy and the subsequent actions of the student. 

Figure 2 shows a schematic diagram of one of one of 
these trees. Each tree is particular to one type of goal 
state, and so the tests apply only to that goal state. For 
example, one test, or predicate, within the algebra cogni-
tive model is if the cell-type (a property) of a worksheet-
cell (a goalnode) is “expression.” Later predicates within 
the tree test whether the expression cell is of the form 
“mx” or “mx+b”. These properties are determined when 
the problem is authored. As seen in the schematic, the 
cognitive model is structured around these kinds of 
predicates.  When a given predicate is satisfied, the stu-
dent may see hints or “JITs” (just-in-time feedback mes-
sages).  However, not all properties that are important for 
tutoring can be determined at authoring time, so some 
properties must wait until the student is in the midst of 
solving the problem, or at runtime. In the diagram, “RC” 
notates a Runtime Condition and “SIRC” notates a Stu-
dent Input Runtime Condition. A Runtime Condition 
might, for example, specify that the hint to be given de-
pends on whether the student has already completed part 
of the problem. A just-in-time message is triggered by 
SIRCs, because they depend on what the student entered. 

Figure 3 shows the design for this Predicate Tree In-
spector. The upper left pane of the design shows the 
predicate tree hierarchy for a particular goalnode. The 
upper right pane shows the full set of predicate tests for 
the selected node at the left, and the lower right pane 
shows the hints, just-in-time messages, and other tutoring 
actions attached at this node. Finally, the lower left pane 
shows the Action Catalog, to be used for repeated tutor-
ing actions within a tree. As desired, the Predicate Tree 
Inspector has the functionality to view all the rules and 
all their parts that comprise Carnegie Learning’s Algebra 
I cognitive model. 

3.1 Rule Editor 
As shown in Figure 2, the nodes contain one or more 
predicates that test certain aspects of the current state of 
the problem. This is akin to a typical production that con-
tains working memory tests in a rule-based system. As 

with the Object Model editor, the challenge here is to 
make such a representation understandable and usable by 
a non-programmer. The original Algebra I rules were 
built using a toolkit constructed on top of Common Lisp 
(the Tutor Development Kit, Anderson & Pelletier, 
1991). While usable for simple tutors by non-Lisp pro-
grammers, the TDK still had a deep learning curve.  
 What is required is a system that lays bare what is 
needed to produce statements such as “give this help 
message when the student is in an expression cell of the 
form mx+b and the problem involves money” and “pro-
vide this just-in-time help message if the student enters 
an expression but leaves off the intercept.” In addition to 
providing an intuitive way to enter such expressions 
when required, the interface needs to guide the author in 
creating the syntax for each part of the predicate and pro-
vide templates for entering help, just-in-time-messages, 

and the other actions that can be performed by the tutor. 
Figure 4. Rule Editor. 

 The language that is used in these predicates and in 
other parts of the SDK to refer to a working memory 
state is called Tutorscript. We modeled this scripting lan-
guage on those found in other object-oriented environ-
ments (e.g., Applescript in the Macintosh operating sys-
tem). It provides an English-like way for non-
programmer authors to refer to the needed aspects of the 
problem state within the rule system. 

3.2 Tutorscript Editor 
Tutorscript provides a way for the author to refer to the 
object hierarchy within the constraints of the rules used 
by the cognitive model. Therefore, it is used not only in 
the predicates used within the rules, but also in the hint 
and just-in-time message templates, as well as other as-
pects of the authoring system. In addition to providing a 
way for authors to refer to properties within the object 
model, the syntax of Tutorscript also provides simple 
if/then clauses, arithmetic, and formatted output. 
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The only provision within the older authoring tools for 
Tutorscript was for the author to type out the reference. 
This placed a burden on the author to remember the syn-
tax and the route through object space to reach the de-
sired property. This added greatly to the programming 
aspect of what should be a cognitive modeling task. 

Designing a Tutorscript editor is a challenge because a 
Tutorscript phrase is read from left to right, but is more 
properly constructed from right to left. A piece of Tutor-
script like displayed in Figure 5, “item n of columns of 
worksheet of problem of tutor [of label-node]” starts with 
all the properties accessible from the goalnode label-
node, of which tutor is one. The tutor property itself re-
solves to an object which has certain properties, of which 
problem is one. The Tutorscript phrase is built up like 
that until the author finds a path to the desired property, 
in this case item n (the author will need to indicated 
which exact item) of a list of worksheet-column object. 

As can be seen in Figure 5, our design calls for the Tu-
torscript phrase to be built from the bottom up, with all 
the properties of the base goal-node (label-node in this 
case) selectable from a pop-up menu. Once a selection is 
made, the appropriate properties for the next part of the 
Tutorscript phrase appears in a pop-up menu above the 
initial menu, and so on until the author arrives at the ter-
minal property. The dialog also includes the other fea-
tures of Tutorscript such as arithmetic and simple if-then 
statements. The Tutorscript editor is available every-
where in the system that Tutorscript is allowed, which 
includes predicates, hint messages, just-in-time-
messages, and other actions taken by the tutor. 

4 Usable by Non-programmers 
The main concern with this work is if the underlying rep-
resentation used to represent the objects and rules are 
understandable by non-programmers (and indeed, even 
by non-cognitive scientists). Towards that end, a basic 
study that assessed the understandability of the object 

and rule model was conducted. A major risk associated 
with this project was not that the resulting tools could not 
author meaningful cognitive tutors, but rather that the 
tools would be too complex for a non-cognitive modeler 
to understand. An experiment was conducted to ensure 
that the representations developed for the object and rule 
viewers could be used and understood by people unfamil-
iar with cognitive models. 

Sixteen undergraduate participants at a middle-sized 
liberal arts university took part in the study. These stu-
dents had no computer or cognitive science background. 
Participants were instructed in one of two ways to repre-
sent information. One of these ways was more consistent 
with the older implementation of the authoring system 
(that is, a flat, programming-based representation), and 
the other way was more consistent with the representa-
tion embodied in the tools discussed above. Participants 
were first given instruction in objects, properties, and 
inheritance, as well as representing rules relating objects 
and actions. They were then given a test of their under-
standing. The instruction used examples of an animal 
hierarchy for objects, and a banking example for rules. 
The testing was designed to show whether students could 
generalize from their instruction using animals and bank-
ing to a new, foreign domain using similar representa-
tions. The new domain was based on the existing algebra 
system developed by Carnegie Learning for both objects 
and rules. The questions asked were ones of identifica-
tion, such as “What are the inherited properties of this 
object?” “What are the children of this object?” and “Un-
der what conditions will this message be displayed?” 

Across both conditions, the self-paced instruction time 
was minimal to get them up to speed, amounting to less 
than 16 min. There were no significant differences be-
tween the two conditions in terms of time or accuracy 
(average of 75.0%), and all but one of the participants 
was significantly above chance in accuracy. The one par-
ticipant not above chance was in the flat representation 
condition. We take this as evidence that these representa-

Figure 5. TutorScript Editor. 
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tions are readily learnable and usable by non-cognitive 
scientists and non-programmers. While we expected a 
stronger difference between the two conditions, with the 
hierarchy requiring less time, a difference might not arise 
until participants have to produce cognitive models, fix 
errors, and interact more deeply with the representations. 
Furthermore, the presentation of the information may not 
have had a high enough fidelity or been intuitive enough 
for the participants to accurately gauge differences. 

A second result comes from a final task in which par-
ticipants were shown a short narrative about objects, 
properties, and rules in the knowledge domain of cell 
phones and calling plans and asked to draw a representa-
tion of this domain freehand, based on the instruction and 
testing they had received.  All but 2 of the 16 subjects 
produced a representation that was tree-based, like Figure 
2, as opposed to using a flat representation or the hierar-
chical file-explorer-style representation (Figure 3). This 
suggests that a tree structure might be a natural represen-
tation for representing hierarchies. Future work will be 
needed to determine whether tree diagrams work well in 
a computer-based context both for representing and un-
derstanding hierarchical information.  

5 The Rest of the ITS Authoring System 
What we described here has been the authoring system 
for the cognitive model. In order to create a complete ITS 
system, many more pieces must be in place: the interface, 
the curriculum, and problems that fit within the curricu-
lum. We are at various stages of work on these pieces. 
Ritter et al. (1998) described a problem authoring system 
for algebra problems. The tools described here have a 
simple mechanism for inputting the problem attributes 
problem, but we advocate the creation of special author-
ing tools for complex problems to open up the problem 
authoring process to a wider audience, including stu-
dents. We have an in-house curriculum authoring system 
that enables problems to be put into sections so that tutor 
has the information available to provide a curriculum to 
the student. The curriculum authoring tool also allows the 
author to pick and arrange the skills that the students will 
learn. Finally, we currently have a simple interface 
toolkit available in java that allows for the construction 
of interfaces that can communicate to the tutor backend 
(described in Ritter & Koedinger, 1996). We envision a 
tutor GUI construction kit, but that work is in the future 
(the system described by Koedinger et al. does have such 
a provision).  

6 Conclusions 
The work described here is still ongoing, but the accom-
plishments have been sufficient for our team to do real 
work with the tools. Carnegie Learning’s current Algebra 
I system is represented successfully using these tools. A 
current project is the re-implementation of the geometry 
cognitive model. While there is some overlap, geometry 
offers enough difference for us to gain perspective as to 

what the missing pieces are in the current implementa-
tion. Next steps include widening the domains of ITSs 
constructed using these tools, and integrating the various 
components of the total ITS authoring system. 
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