
Expansion of the xPST Framework to Enable
Non-Programmers to Create Intelligent Tutoring

Systems in 3D Game Environments

Sateesh Kumar Kodavalia , Stephen Gilberta , Stephen B. Blessingb

Virtual Reality Applications Center, Iowa State Universitya

University of Tampab

Abstract. Our previous work has demonstrated that the Extensible
Problem Specific Tutor (xPST) framework lowers the bar for non-
programmers to author model tracing intelligent tutoring systems (ITSs)
on top of existing software and websites. In this work we extend xPST to
enable authoring of tutors in 3D games. This process differs substantially
from authoring tutors for traditional GUI software in terms of the in-
herent domain complexity involved, different types of feedback required
and interactions generated by various entities apart from the student.
A tutor for a village evacuation task has been constructed in order to
demonstrate the capabilities of using the extended xPST system to create
a game-based tutor.

Key words: Intelligent Tutoring System, xPST, 3D Games, Authoring,
Cognitive Tutor

1 Background: xPST Authoring System

Re-using an existing interface with a tutor reduces the time required to develop
the tutor and any issues of learning transfer, a concern of past researchers [1]. If
the ITS environment is the same as the non-ITS environment then such issues of
transfer largely disappear. We developed the Extensible Problem-Specific Tutor
(xPST) [http://code.google.com/p/xpst/] in order to create ITS-based soft-
ware training within the software itself. Traditional software training often uses
videos based on screen-recordings, but this passive technique to learning has been
shown to be less effective than an ITS [2]. xPST is similar to the Cognitive Tu-
tor Authoring Tool (CTAT; [3]). Both allow for the creation of problem-specific
tutors with programming-by-demonstration means. CTAT allows for a more vi-
sual programming approach. xPST was designed specifically to overlay a tutor
on top of existing software.

The xPST architecture is an instantiation of the architecture of plug-in tutor
agents described in [4]. The xPST file, which contains information that allows
for instruction akin to a model-tracing tutor, describes the objects within the
learning domain and rules that determine which feedback the student will re-
ceive. Every interface element of the application for which one needs learning



2 Expansion of the xPST Framework for Authoring in 3D Game Environments

instruction is mapped to an object (goalnode) and has one or more rules asso-
ciated with it. The rules contain the instructional feedback. A Listener plugin
or module eavesdrops on user actions in the third party software and sends
them to the xPST Tutoring Engine, which checks them with the xPST file. We
use the terminology that a goalnode is completed when the correct answer to
that particular goalnode is given by the student at an appropriate point in the
problem-solving process. Feedback is mapped back to the client UI control and
displayed appropriately. Because software training does not typically require as
many repetitive tasks as academic learning domains such as mathematics, such
problem-specific models are simpler to produce and manage.

The xPST file is a text file written using a syntax that is designed to be easy
to read and write for an inexperienced cognitive modeler. The file contains three
sections: Sequence, Mappings, and Feedback. The sequence identifies possible
paths of steps the user might take through the problem space to achieve the
goal specified in the task. The feedback section provides hints and error messages
for each step within the sequence. Finally, the mappings section maps interface
identifiers to the steps noted in the sequence that the user takes. Because of
this relatively simple syntax, the authoring tool for xPST can be a text editor.
We have also built an online text editor for creating web-based xPST tutors in
which authors can immediately jump to their target website and test the current
xPST file [5].

We have confirmed that the xPST approach can be used to develop real
tutors rapidly; our most extensive effort is described in [6], in which a tutor
taught university faculty how to use a complex web-based homework authoring
tool. Other efforts include tutoring on the NCBI biotechnology site and on the
Slashdot website. These examples used the xPST Firefox plugin to allow xPST to
eavesdrop on a user’s interactions with any website that uses static html, which
includes those that do not use significant Flash or AJAX-style interactions.

2 Emergence of Games in Tutoring

For learning to be effective it should be scaffolded or guided [7]. During the last
few decades, the very nature of teaching in modern universities has changed [8].
Motivating students by setting challenges, goals and problems which are engag-
ing is being seen as a key factor in the learning process. Research has shown that
students learn better and retain more when they actively engage in the learning
process. Tutoring using games provides these advantages compared to tutoring
with traditional software. Pedagogy researchers have shown an increased interest
in incorporating gaming principles into teaching and learning [9]. Games manage
to maintain the user’s attention with a background story, high-end graphics and
the feeling of immersion within a simulated environment. Games can encour-
age active learning and motivate participation by giving rewards when students
complete a task.

ITS researchers have begun exploring how games and features that are found
in games (e.g., embodied agents) can be used in intelligent tutors. For example,



Expansion of the xPST Framework for Authoring in 3D Game Environments 3

McQuiggan, et al. [10] have examined how topics in middle school science could
be taught using a tutor built on a commercial 3D-game engine. Students search
an island science post to find clues to solve a mystery. While interacting with non-
player characters and making observations in the virtual world, students learn
scientific principles. [11] describes a tutor in which users learn cultural issues
while interacting in a serious game. Gomez-Martin, et al. [12] have developed
a system called JV2M which borrows ideas from games to teach programmers
with Java knowledge the internal workings of the Java Virtual Machine. In some
knowledge domains, games may be the only possible means of simulating and
practicing real world problems. In the military for instance, simulations have
been used for teaching pilots to fly as well as for training of combat scenarios
that would otherwise be too deadly or expensive to train in the field [13].

Our work focuses on helping military trainers create these tutors easily for
various training tasks using 3D games, typically first-person shooters (FPSs), as
the simulation environment. Authoring of 3D game-based tutors is challenging
due to their inherent domain complexity, the different kinds of feedback required
and the interactions generated by various entities in the game apart from the
player. These changes require an extension of xPST to enable a military trainer
to author a game tutor. Before discussing the extensions required for xPST to
enable authoring in 3D games, we discuss the core differences between 3D games
and traditional GUI software or websites from the perspective of authoring ITSs.

3 3D Games Vs Traditional GUI Software or Websites

In a traditional GUI application or website, there are usually a set of controls
(e.g. buttons, menus) that correspond one-to-one with a set of features. Some
of these controls typically remain on screen while the user works. The two-part
architecture typically consists of an application (e.g. Microsoft Word or Adobe
Photoshop, or Amazon.com or Google.com) that has particular state while user-
created content (e.g. a document, an image, or a query) is shaped by the user.
A user’s actions will typically evoke similar responses if done repetitively. In
a game, on the other hand, a user’s actions are frequently dependent on the
context of other entities and the timecourse within the game. Rather than the
user changing a file or query within an application that maintains a state, the
gamer is focused on changing the application’s state within the game state space.
The states can be discretely defined, and they then act as the goalnodes: the
user’s goal is not to complete a textbox with a certain correct answer but rather
to reach a specific state. The granularity at which these states needs to be
defined depends on the author and the complexity of the task. The traditional
GUI software and websites are typically a static system where all the events are
triggered by the student (player). But 3D games are more like a dynamic system
where interactions can happen between various entities in the game apart from
the player and the events can be triggered by different entities in the game (e.g.
by automated enemy players, or “constructive forces” in military terminology).



4 Expansion of the xPST Framework for Authoring in 3D Game Environments

We categorize the events generated by the player and the events generated by
other entities into player events and non-player events.

Unlike the traditional GUI software or websites, 3D games require the student
to navigate through a simulated environment, the map, and sometimes commu-
nicate with the other entities in the game. This calls for the authoring system to
provide tools to support tutoring on communication-based and location-based
subtasks, e.g., “Identify yourself to the guard” or “Return to mission headquar-
ters to give a report.”

3D games and traditional GUI software also differ in the kinds of feedback
required for tutoring. In GUI-based tutors, we have seen that two typical types
of feedback Hint and Just in Time error messages, or JITs, are sufficient. A Hint
corresponds to information about how to complete next goalnode in the sequence
and is given on student’s request (“What do I do next?”). A JIT corresponds to
corrective feedback when the answer to a particular goalnode is wrong (“That’s
not quite right, because...”). JIT s are prompted by the incorrect answer itself. In
3D games, because the goalnodes can represent a much broader range of subtasks
to accomplish than simply typing an answer in a box or choose a drop down menu
option, and because it is sometimes not visually apparent whether the goalnode
has been completed (“Did I reach the location?”), it is sometimes important for
the learner to have feedback from the tutor that is neither requested, like a Hint,
or based on an incorrect event (like a JIT). We call these Prompts. For example
(“Good Job”),(“Do this next.”).

4 Extensions to xPST

In order to accommodate the differences between 3D games and traditional GUI
software or websites, we have added the following extensions to the xPST archi-
tecture to facilitate easy authoring of ITSs in 3D games.

4.1 Actions by Non-Player Objects

Events can be triggered by non-player objects in 3D games. These events are
modeled as hypothetical events by a Player-class object which is not the user.

For example Avatar1:request-answer is the goalnode corresponding to re-
questing an answer from the Avatar1 entity, where Avatar1 is the unique id of
the entity and request-answer is the associated action. This approach is useful
in tutoring on generic actions associated with any entity in the game, such as
Tanker1:explode, Enemy1:attack. This is a more generic way of handling events
compared to the previous xPST architecture in which the unique ID attribute
always corresponds to the Player class object and was hence ignored while writ-
ing in the file. This is because the previous xPST architecture could support
tutoring only on events generated by the Player.



Expansion of the xPST Framework for Authoring in 3D Game Environments 5

4.2 Proactive Hints or Prompts

Since the state space of a 3D game is quite complex with interactions between
various entities, and since it is sometimes not obvious what the current game
state is, it is sometimes useful for the learner to have direct feedback when
the current goalnode is completed or to receive some reminders about the next
goalnode. So we have included a new type of feedback in xPST, “OnComplete”,
supplementing the potential Hints and JITs for each goalnode. This feedback is
proactively provided to the student on completion of that particular goalnode.
Fig. 1 shows the scenario using the OnComplete feedback, which lets the learner
know that he or she has entered Building 1 upon doing so (a location-based
event). The screenshot shows a fantasy game environment. The media repre-
senting a more realistic scenario could easily be created and added by a graphic
designer.

Fig. 1. A Location Event with feedback: ”You have entered Building 1.”

4.3 Communication Events

Unlike the traditional GUI software or websites, many of the tasks in 3D games
require the student to be able to communicate with other player entities in the
game. We have extended xPST to support tutoring on communication events
by using a special goalnode starttalk, to initiate the communication with other
entities. The student will be able to choose the entity with which to commu-
nicate and the message to communicate. This approach facilitates tutoring on
the protocol of communication and the message that is being communicated, a
common training task in the military, where communication is frequently highly-
structured.



6 Expansion of the xPST Framework for Authoring in 3D Game Environments

For example, Fig. 2 shows the instantiation of starttalk goalnode along with
the UI for the user to communicate with the other players.

Fig. 2. Framework of Communication Events

If the student is supposed to choose Evacuate command for the task and if he
chooses a different command, say, the Fire command, a JIT can be fired saying
“You used Fire command on this occupant. That’s not something you need to do
right now.” This multiple-choice user interface for tutoring on communication is
designed to tutor on communication protocol and procedure: what to say and
when and how to say it. Future research will evaluate its effectiveness within
military scenarios.

4.4 Location Events

Location events facilitate tutoring on the navigational aspects of the player’s
performance. Unlike the traditional GUI software or websites, almost every task
in a 3D game requires the player to move within the virtual environment. The
author can use the entityid-enter goalnode to tutor on when the player enters a
particular designated location in the game.

For example, the goalnode b1-enter is triggered when the player enters build-
ing1 (b1). Fig. 1 shows the b1-enter goalnode along with the appropriate feed-
back given to the user in the game.



Expansion of the xPST Framework for Authoring in 3D Game Environments 7

5 Torque Game Engine Advanced and TorqueScript

We have used Torque Game Engine Advanced (TGEA) as our simulation engine.
It is a commercial off-the-shelf game engine from GarageGames. It provides
various core functionalities required for game development like the rendering
engine, physics engine, 3D graphs, collision detection etc. Instead of starting
from the scratch, using an off-the-shelf game engine drastically reduces the game
development time and helps the author concentrate more on the tutoring task.

TGEA supports scripting using TorqueScript. TorqueScript is similar in syn-
tax to JavaScript and allows the developer to create modifications (mods) of the
existing games. We have used TorqueScript to create the xPST Torque driver
which contains two major modules, the Listener module and the Presentation
module. The Listener module listens to the various events happening in the game
and sends them to the xPST engine over the network. Then the xPST engine
sends the appropriate tutoring feedback to the Listener module. This feedback
is then presented to the user through the Presentation module.

The framework of the xPST driver can be leveraged to various other game
engines by making the syntactical script changes required to be able to suit
with that particular game engine. The Torque driver enables tutoring in 3D
games created with Torque Game Engine. The Torque driver is one of the many
possible interfaces to xPST and one of the several we have built. The xPST
Firefox Plugin is an interface which is used to tutor on websites. The Paint.NET
Driver is another interface which is used to tutor on Paint.NET, an image editing
application. Likewise, many interfaces could be built to tutor with xPST on
different existing software applications.

Fig. 3 shows the extended xPST architecture along with the relationship
between various components of the system.

6 Evacuate Demo Task

We have developed a demonstration task called Evacuate to show that the ex-
tended xPST Framework can be used to create ITSs in 3D games. The task
teaches the learner (player) how to evacuate the civilians from all the buildings
in the scenario. The scenario has three buildings, each with one civilian inside.
The player enters each building, checks for civilians present in it, communi-
cates the Evacuate command, and waits for the civilian to come out. When the
learner does this for all the buildings in the scenario, then the task is said to be
successfully completed.

The xPST file or the cognitive model for this task contains three major goaln-
odes which illustrate the game-enabling extensions of xPST. The location-based
buildingid-enter goalnode is completed when the player enters the building with
id buildingid. The buildingid-evacuate goalnode is completed when the player
sends the evacuate command to the civilian in the building with id buildingid.
The starttalk goalnode is completed when the player initiates communication
with the civilian. All these goalnodes are provided with appropriate Hint, JIT



8 Expansion of the xPST Framework for Authoring in 3D Game Environments

Fig. 3. Extended xPST architecture

and OnComplete feedback to guide the student in successfully completing the
task. There are three sets of these goalnodes, one for each of the buildings. The
purpose of choosing more than one building is to showcase the goalnode sequenc-
ing capabilities of the xPST framework; the order of building evacuation does
not matter.

In general, we see that this framework makes authoring of tutors easy in
a complex domain like 3D games. The four important steps required to create
a game tutor from scratch include: 1) Create the tutoring scenario, which in
effect consists of building the game map. 2) Give unique identifiers to each
entity in the game on which you plan to tutor. 3) Make a list of the events
corresponding to the entities chosen to tutor on and give appropriate mapping
names in the mappings section of the xPST file. The mappings associate game-
based events with the goalnodes that need to evaluate those events within the
tutor. 4) Complete the feedback and sequence sections of the xPST file, listing
the appropriate feedback for each goalnode and the sequence(s) in which the
goalnodes may to be accomplished. Step 1 is perhaps the most difficult step,
and is required of the scenario author even in the absence of a tutor. We have
demonstrated in past research [5] that novice authors can accomplish steps 2-4
with little training in a simpler software setting, that of using a website to search
an online database. Future research will explore whether military trainers could
use a modification of those previous tools to overlay an xPST tutor on existing
virtual training scenarios effectively.



Expansion of the xPST Framework for Authoring in 3D Game Environments 9

This approach is very much extensible for tutoring on other game tasks.
The potential author would be provided with a library of actions associated
with different generic entities in games. The author would then use them in his
or her xPST file as required by the tutoring task. Authors with programming
knowledge requiring more specific tutoring actions could create more of these
using TorqueScripting and add them to a library for their specific tutoring needs.

7 Conclusions

We have discussed the xPST framework which allows for fast creation of model-
tracing tutor for a specific problem. We have also discussed the prime differences
between 3D games and traditional GUI software or websites from the perspective
of authoring ITSs. Understanding the differences between 3D games and tradi-
tional GUI software or websites, we have described the extensions that were
required for the xPST framework to enable it to be able to tutor in 3D games.
We have also described the game engine used and important subcomponents of
the xPST Torque driver used to communicate with the xPST engine. Finally, we
have discussed a demonstration task showing that the extended xPST framework
can be used to tutor in 3D games.

As stated previously, our goal is to provide military trainers, as well as oth-
ers who author scenarios in 3D environments, the ability to create in-scenario
tutoring in an appropriate and easy-to-author manner. In the future, we would
like to evaluate the programmability of this system by conducting a study where
we examine how novice xPST authors with little programming experience can
learn to create to these kinds of tutors.

Acknowledgments. We thank Steven Ourada as the senior architect of xPST.
This work was supported in part by the National Science Foundation under
OII-0548754 and by the Air Force Office of Scientific Research.

References

1. Corbett, A. T., Koedinger, K. R., Anderson, J. R.: Intelligent tutoring systems. M.
G. Helander, T. K. Landauer, P. Prabhu, (eds.) Handbook of Human-Computer
Interaction. 2nd edition Elsevier Science, 849–874. (1997)

2. Hategekimana, C., Gilbert, S. Blessing, S.: Effectiveness of using an intelligent
tutoring system to train users on off-the-shelf software. In: K. McFerrin et al.
(eds.), Proc. of Society for Info. Tech. and Teacher Education Int?l Conf., AACE.,
pp. 414–419. (2008)

3. Aleven, V., Sewall, J., McLaren, B. M., Koedinger, K. R.: Rapid authoring of
intelligent tutors for real-world and experimental use. In: Kinshuk, R. Koper, P.
Kommers, P. Kirschner, D. G. Sampson, W. Didderen (eds.), Proceedings of the
6th IEEE International Conference on Advanced Learning Technologies, pp. 847–
851. (2006)

4. Ritter, S., Koedinger, K.: An architecture for plug-in tutor agents. Journal of
AIED, 7(3-4), 315–347 (1992)



10 Expansion of the xPST Framework for Authoring in 3D Game Environments

5. Gilbert, S., Blessing, S. B., Kodavali, S.: The Extensible Problem-Specific Tutor
(xPST): Evaluation of an API for Tutoring on Existing Interfaces. In: Proceedings
of the 14th International Conference on Artificial Intelligence in Education (2009)

6. Roselli, R.J., Gilbert, S., Howard, L., Blessing, S. B., Raut, A., Pandian, P.: In-
tegration of an Intelligent Tutoring System with a Web-based Authoring System
to Develop Online Homework Assignments with Formative Feedback. American
Society for Engineering Education Conference (2008)

7. Kirschner, P. A., Sweller, J., Clark, R. E.: Why minimal guidance during instruc-
tion does not work: An analysis of the failure of constructivist, discovery, problem-
based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2),
75–86 (2006)

8. D. Laurillard.: Rethinking university teaching: A framework for the effective use
of educational technology. Routledge (1993)

9. J. Kirriemuir, A. McFarlane.: Literature reviews in games and learning. Technical
Report Report 8, Nesta FutureLab Series (2004)

10. McQuiggan, S., Rowe, J., Lee, S., Lester, J. (2008).: Story-based learning: The
impact of narrative on learning experiences and outcomes. In: Proceedings of the
Ninth International Conference on Intelligent Tutoring Systems, Montreal, Canada,
pp. 530-539. (2008)

11. Johnson, W. L.: A simulation-based approach to training operational cultural com-
petence. In: Proceedings of ModSIM, Virginia Beach, VA. (2009)

12. M. Gomez-Martin, P. Gomez-Martin, and P. Gonzalez-Calero.: Game-driven intel-
ligent tutoring systems. In: Proceedings of the Third International Conference on
Entertainment Computing (ICEC)., pp. 108-?113. (2004)

13. R. H. Stottler.: Tactical action officer intelligent tutoring system(tao its). In: Pro-
ceedings of the Industry/Interservice, Training, Simulation and Education Confer-
ence (I/ITSEC 2000) (2000)

14. Blessing, S., Gilbert, S., Blankenship, L., Sanghvi, B.: From SDK to xPST: A New
Way to Overlay a Tutor on Existing Software. In: Proceedings of the Twenty-
Second International FLAIRS Conference (2009)


