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Abstract— This paper proposes a method for constraint
detection using only proprioceptive data. This method for
constraint detection was tested on a pre-existing data set and
was found to be able to detect insertions. Two additional ex-
periments were performed. The first showed that the constraint
detection algorithm can be used to associate an action with an
event. The second experiment implemented a learning technique
to show that learning from constraint detection can improve the
efficiency of performing a task. Our method can be applied to
both environmental constraints (i.e. limited space to move) and
object constraints (i.e. levers, wheels, etc.).

I. INTRODUCTION

Traditionally, robots trying to complete tasks in con-
strained space are provided with a pre-defined representation
of that space. However, variation between spaces makes
it nearly impossible to program a robot to interact with
every constraint it could encounter. We propose that this
is not the best approach because it limits the robot to
completing tasks only in pre-defined spaces. Robots that need
to complete tasks in constrained space should be able to
explore the constrained space on their own and learn from the
exploration. For example, a housekeeping robot would need
to unlock and open doors. Trying to program a housekeeping
robot to use every type of door handle and lock would be
nearly impossible.

We propose a new method which allows a robot to learn
how to detect and interact with the constraints in its envi-
ronment. This allows the robot to explore any environment
independently of any other senses such as vision. A learning
algorithm is then employed to enable the robot to concentrate
on unconstrained movements which augments the robot’s
ability to complete a task in a constrained space.

II. RELATED WORK

A. Robotics

The current research is highly motivated by the prior work
of Koonce et al. [8] who developed a method for a robot to
insert a peg into a hole. This method was simple and involved
few steps. First, the robot pressed the block up against the
aperture in which various shaped holes were cut. Then,
the robot rotated the block without observing it until the
the block fit in the hole. This experiment successfully used
random exploratory behaviors to complete a peg in a hole
task without using any kind of sensory feedback. However,
because of the random nature of the task and the lack of
sensory feedback, the robot could not truly be said to know

what exactly it was doing and could not make corrections to
its actions should its senses call for them.

Upon examining the proprioceptive data, it was concluded
that the propioceptive data for successful insertion trials
appeared differed from that of unsuccessful ones. This could
possibly be used to give the robot some amount of awareness
that its arm is operating within a constrained space and
has therefore completed the task. While our task maintains
the same basic principles of using exploratory behaviors to
perform an insertion task, we attempted to program the robot
to learn if its hand is constrained by analyzing joint torques.

While the current research does not explicitly concern in-
sertion or assembly tasks, these types of activities do involve
robotic manipulators planning motions around a series of
constraints. The completion of these tasks is achieved by a
variety of means. One way is by using visual models to guide
insertions. Morrow et al. [13] developed visual primitives
and combined them with force based primitives to create a
sensorimotor algorithm that allowed the robot to complete
connector insertion tasks. Meeussen et al. [12] programmed
their robot to use laser scanners to find places in a wall that
afforded the insertion of a three pronged plug. The robot
could then plug itself in, allowing it to act self-sufficiently
for long periods of time. Mayton et al. [11] performed a
similar feat, in that their robot was able to plug itself in.
However, instead of using visual feedback to do so it used
the natural electromagnetic fields created by electrical outlets
to guide it and to help it insert its plug into the outlet.

Bruyninckx et al. [1] demonstrated that it was possible
to use either of two different models in order to complete
insertion tasks. The first was a kinematic model that created
a model of the goal location (the hole) and calculated three
points of constraints. The robot’s manipulator would not
leave these constrained areas. It would then calculate the
Jacobians of the manipulators and the peg and use them to
guide its manipulator to the goal. A geometric model was
also used, in which the robot took into account the angles
and dimensions of the peg and the hole and would arrange
the peg so that it would arrive at the hole already angled for
entry.

Suarez et al. [18] aimed to find a way to perform insertion
tasks without the use of geometric models, as those are
not always available in an accurate form. To do this, they
modeled the many uncertainties of the robot’s environment
and used force feedback information to guide the robot’s fine
motions through several task states and eventually into the



goal state. Paetsch and his colleagues [15]circumvented the
problem of uncertainties by programming into their robot a
number of strategies modeled after real humans’ strategies
for inserting a peg into a hole. As the robot attempted to
place the peg into the hole, it used force feedback sensors
to decide which strategies to use. Paetsch’s results showed
that his strategies, when used in tandem with each other,
increased the success rate of the task.

B. Developmental Psychology

As the current research aims to develop the robot’s capa-
bilities in an incremental manner, it is important to model it
after the growth of an infant’s capabilities. Infants begin life
with the ability to perform very basic exploratory behaviors
such as grasping and pulling objects closer to them. While
their movements seem random, they must have some amount
of intention behind them as infants express expectations of
the results of their movements [4]. They use most of their
senses, including touch, taste, sight, and proprioception to
discover the affordances of objects. Affordances are what
an actor perceives an object’s use to be as well as how the
object conveys this information. Affordances are subjective
and context based; a stick may afford being used as a poking
device or it may be used to pull objects close when they
are far away[19]. As infants grow, they are able to discern
affordances more easily by using perception [9][2]. They can
perceive affordances, observe the effects their actions have
on their environments, and adjust their ideas of the present
affordances [4].

Studying the progression of infants’ abilities to manipulate
objects in constrained space is directly beneficial to our
research. Infants have shown the ability to consistently insert
objects into holes at approximately 22 months of age [17].
Infant chimpanzees, which mirror the developmental cycle
of humans, exhibit the insertion behaviors even earlier at 10
months [6]. This ability does not simply pop into existence;
it follows a series of changes. At 15 months, human infants
are able to perform insertion tasks, albeit at rates of chance
[14]. This shows that as motor skills develop and cognitive
faculties grow, insertion tasks become easier due to increased
spatial reasoning and coordination. A similar measure used
to track infant’s growth is the development of stacking
behaviors. Chimpanzees and humans can efficiently stack
objects on each other by three years of age. Doing so requires
knowledge of the affordance of the objects being stacked to
both support objects above it and to be steady on top of the
object below it [7][5]. The robot used in the present research
has the developmental capacity of a child of about two years
of age. These studies show that it should be possible for this
robot to learn to interact with constrained space. This is a big
step in this robot’s natural progression towards intelligence.

III. METHODOLOGY

A high-level overview of the proposed framework for ex-
ploring constrained and traversable regions in proprioceptive
space is shown in Figure 1. The robot learns from past

interactions to drive future interactions by concentrating on
unconstrained movements.

Fig. 1. The high-level structure of the framework for detecting and
traversing spatial regions with constraints.

The robot performs exploratory behaviors to detect where
and how its movements are constrained in space and where
they are unconstrained. Proprioceptive feedback from the
behaviors allows the robot to learn about unconstrained
directions and favor these directions in selecting its future
movements. This is beneficial because unconstrained move-
ments are more likely to generate a desired outcome than
constrained movements in a rigid space.

A. Interaction

The methods used in these sections were inspired by
the field of Motor Synergies[10]. In this field, the di-
mensionality of data is reduced to create structures called
manifolds. Manifolds contain all possible combinations of
environmental variables to produce the same outcome. For
example, a manifold may contain all the possible joint angle
combinations possible to achieve the same position of the
index finger in space. In contrast, the profile in this work
represents a subset of the possible unconstrained joint torques
during unconstrained movement in a given space. We believe
that when the robot meets a constraint, the joint torques in
the robot’s arm exceed the joint torques encountered during
unconstrained movement, and a comparison between the
unconstrained profile and the current exploratory profile can
be used to detect the state of the robot’s movement.

Our method uses Principal Component Analysis (PCA).
PCA is a dimensionality reducing algorithm which takes a
set of N multi-dimensional vectors and returns N vectors
(called principal components or PCs) ordered by the amount
of variance and co-variance of the points in the data. This



Fig. 2. The three step process to detection of constraints. The unconstrained profile is collected (top), and then the exploratory profile is
collected (middle). The two profiles are compared (bottom). If the exploratory profile is contained within the unconstrained profile, it is
considered similar or unconstrained. If a part of the exploratory profile is not contained within the unconstrained profile, it is considered
different or constrained. In this example, the exploratory profile was constrained, as indicated by the differences in the girds, outlined in
red.

scheme allows us to look at a multi-dimensional space in a
representation which has fewer dimensions, while preserving
the most important features of the data.

In this experiment, the robot takes a set of seven joint
torque vectors, and PCA is performed on these vectors.
The output is the seven principal component vectors of the
data. We take the first two principal components and create
the unconstrained profile. In prior research [16][20], it was
found that the vast majority of variance between different
hand positions (>80%) could be accounted for by just two
principal components. This finding held true for our data, so
we were able to plot the variance in joint torque data in two
dimensions by plotting the first two principal components.
Essentially, by analyzing the differences between the first
two principal components, we can reduce the dimensionality
of our data from seven to two. According to Flanders [3],
one way to integrate perception and motor movements is
to compare memories of positions of the joints. This is
why we compare the PCA profiles created by exploration
in constrained space to those created by exploration in un-
constrained space; the profiles represent the robots memory
of what was happening to its hand at specific locations. This
first part of the algorithm can be visualized in the first two
columns of the top row of Figure 2.

To simplify the representation of the unconstrained profile
even further, the space is divided into a grid. For every cell in
the grid, if any point of the unconstrained profile falls within
that cell, the cell is considered a part of the unconstrained
profile. The result of this process is a grid structure where the
shaded cells represent the unconstrained profile, as shown in
the right column of the top row of Figure 2.

B. Constraint Detection

The robot uses the unconstrained profile to classify its
movements as either unconstrained or constrained. To do
this, the robot collects all the torque readings for a particular
movement. PCA is conducted on this set of torques, which
creates a profile for the constrained torques. A grid is
obtained in the same way as the unconstrained profile grid.
This process is described in the second column of Figure 2.
The two grids can now be compared as can be seen in the
bottom row of Figure 2. If the exploratory profile is contained
within the unconstrained profile, they are considered similar.
Otherwise, the two profiles are considered different.

IV. EXPERIMENTAL SETUP

Two experiments were performed with the robot. The card
reader and magnetic strip card shown in Figure 3 were used.
The card reader was mounted on a vertical board in front



Fig. 3. Magnetic card and reader.

of the robot with the card slot in a vertical orientation. The
card reader was connected to a computer so that successful
slides could be recorded. A slide was considered successful
only if all the information on the magnetic strip of the card
was read. To prevent the card from slipping in the robot’s
fingers a layer of tape with the adhesive exposed was placed
on the top of the card and tape was placed on the tips of the
robot’s fingers with the adhesive not exposed as can be seen
in Figure 4.

Fig. 4. Tape used to enhance the robot’s grasp on the card.

For all experiments, the robot’s exploration space was con-
strained to a triangular plane with the top point being the top
of the card reader, and the two bottom points being on either
side of the bottom of the card reader, as shown in Figure 5.
R random joint positions were generated from the top point
to a point between the bottom two points. In experiment 1, a
random joint position from R was chosen and a movement to
that position was performed. In Experiment 2, random points
from R were chosen for some trials and a strategy, seen
below, was used for others. The robot attempted performing
these movements, returning to the top after each one. Before
each experiment, an unconstrained profile (as described in the
methodology section) was collected. The profile consisted
of 100 random movements in unconstrained space. After
the unconstrained profile was collected, the robot’s hand,
holding the card, was placed so that the card was in the
card reader, close to the top point of the triangle. The robot
performed random movements and data for two experiments
was collected.

Fig. 5. Plane of exploration for the card reader defined by yellow
circles. Possilbe movements indicated by blue arrows.

A. Experiment 1

The purpose of this experiment was to identify whether a
correlation between unconstrained movements and successful
slides of the card exists. The robot performed 200 random
movements in the space. For each movement, the state
(constrained or unconstrained) was recorded, and the card
reader feedback (read or fail) was also recorded.

B. Experiment 2

This experiment introduced two strategies for exploration.
The first was based on the constraint detection algorithm.
If the robot detected a constraint during a movement, it
would stop the movement, return back to the origin, and
proceed onto the next movement. The second strategy was a
learning scheme which favored unconstrained movements. It
used the KNN algorithm with K = 3 to find the probability
of unconstrained movement for each candidate joint position.
The candidate with the highest probability of unconstrained
movement was chosen. The robot performed 100 movements
for each combination of strategies N = 4.

V. RESULTS

The constraint detection method was applied to the data
set obtained by Koonce at al.[8]. This data set contains
proprioceptive data for one hundred and eighty different
insertion attempts. Each attempt is categorized as successful
insertion or unsuccessful insertion. Trials with successful
insertions were treated as having constrained movement, and
trials with unsuccessful insertions were treated as having no
constrained movement. There were three insertion objects:
a circular, a cross-shaped, and a hexagonal block. Each
object had a corresponding hole, and would fit only in
that hole. Twenty insertion attempts were performed for
each object-hole combination. Two unconstrained trials were
chosen at random to build the unconstrained profile, and



Fig. 6. Comparison of constrained and unconstrained profiles.

PCA was performed on every other trial using the principle
components of the two unconstrained trials. The data set
was separated into three categories according to the shape
of the insertion object (circle, cross, or hexagon), and each
category was separated into two subcategories (unconstrained
and constrained). The obtained results are displayed in Figure
6. In all three cases, differences between the constrained
and unconstrained profiles can be observed. Furthermore,
the pattern appears to be generalizable, as the unconstrained
profiles are more centered, while the constrained profiles
exceed the boundaries of the unconstrained profiles. This is
consistent with this work’s proposal that the unconstrained
profile represents the space of most joint torque combinations
during unconstrained movement and the introduction of a
constraint results in joint torque combinations outside the
unconstrained space.

A distance matrix between all trials was also created using
our method. Every trial was treated as unconstrained and an
unconstrained profile from that trial was created. Then, all
trials were treated as exploratory, and the number of elements
that were outside the unconstrained profile was found. This
difference would then be recorded with the row being the
number of the unconstrained trial and the column being
the number of the exploratory trial. The distance matrix for
all trials with the circular block can be seen in Figure 7.
The trials were grouped by category, with the constrained
trials being the lower numbered trials and the unconstrained
trials being the higher numbered trials. White represents high
similarity and darker shades represent lower similarity. The
constrained trials are all darker shades meaning they were
very dissimilar from all other trials, and that our method
algorithm was able to separate the constrained trials from the
unconstrained trials. Distance matrices were also constructed
for the cross shaped and hexagonal blocks. However, since
the experiment focused on insertions and not constraints,
the data only indicates when objects were inserted into
holes. These two shapes could become partially inserted
and therefore constrained but be recorded as unconstrained
because the block was not fully inserted. Therefore the

Fig. 7. Distance matrix for sixty trials with the circle shaped block.
The first eleven trials are constrained and the rest are unconstrained.

results from that analysis are inconclusive and will not be
included.

Fig. 8. Results from Experiment 1. 200 random movements were
performed. 97% of all unconstrained movements successfully read
the card and only 3% failed.

A. Experiment 1

The results for this experiment can be seen in Figure
8. The results of this experiment show that unconstrained
movement can be associated with successful scanning of



the card. Out of the 200 trials, 73 unconstrained move-
ments were performed. During these movements, the card
was successfully scanned 71 times and was unsuccessfully
scanned 2 times. There appears to be a correlation between
unconstrained movements and sliding the card as 97% of
unconstrained movements resulted in a successful read.

Fig. 9. Results from Experiment 2. *The robot failed to complete
the entire trial in 10 out of 10 trials when learning and constraint
detection were turned off; on average, the robot attempted to slide
the card 12.7 times and succeeded in doing so 4.5 times before it
removed the card from the reader.

B. Experiment 2

The results of this experiment can be seen in Figure 9.
A relationship between the learning strategy, the constraint
detection strategy, and successful scanning of the card can
be observed. Each trial of this experiment consisted of 100
movements. When the learning strategy and the detection
strategy were both used, the robot performed 95 successful
slides. When the learning strategy was on and the constraint
detection was off, the robot performed 75 successful slides.
When the learning strategy was turned off and the con-
strained detection strategy was on, the robot performed 10
successful slides.

When both strategies were turned off, the robot was not
able to complete a trial as it exerted too much force and bent
the card out of the card reader. Ten attempts to complete this
trial were performed and the robot failed all ten at an average
of 53.27 seconds after the beginning of the experiment.
On average, the robot slid the card 12.7 times and was
succesful 4.5 times. These attempts are similar to the trials
in Experiment 1, however, the speed of movements of the
robot was increased in this experiment to increase efficiency.
Because of this, the force exerted during constrained move-
ments was greater and the robot forced the card out of the
card reader. These results show that the learning strategies
had a significant effect on the robot’s ability to perform the
task. Without the learning strategies, the speed increase made

the task almost impossible to complete for the robot. With
the strategies, the robot was able to complete a significantly
higher number of succesful slides.

VI. CONCLUSION

This work proposed a constraint detection algorithm based
exclusively on proprioception. The algorithm was tested on a
previous data set with promising results. It was also tested on
a card reader. The results of those experiments indicate that
the algorithm can be used to associate unconstrained move-
ment with task completion. Furthermore, learning strategies
were developed which increased the robot’s ability to com-
plete the task succesfully. Our algorithm can be used to
enable robots to interact with environments in conditions
where visual models cannot be created.

VII. FUTURE WORK

The method we have presented in this paper can be
applied in many different ways. We have shown that it can
be used to explore constraints and learn from them. We
foresee this method being used in other areas as well. One
possible extension of this method is detecting that a key has
been inserted and finding out which way it turns. Using
the exploration featured in our method, the robot would
be able to operate a lock. Furthermore, this method could
allow robots to associate different keys with different locks.
Observation of how the key turns in the lock would allow
the robot to determine which key works in which lock.

Spatial semantic hierarchies could be constructed using
our method. For example, opening a door allows one to
open the door and access what lies behind it. Our method
could detect that, when closed, the door acts as a constraint,
blocking the robot from getting behind it. Once open, the
door no longer acts as a constraint in this manner. A
hierarchy could be built showing that opening the door allows
the robot to access what is behind it based on the removal
of the door’s constraint.

Mobile robots could be able to use this method for
assistance in navigation in multiple ways. Robots needing
to get through doors could use our method to learn how
to use door handles and how doors open. Exploration would
allow the robot to open a door regardless of whether the door
opens in or out. The robot could also learn to manipulate
many different door handles by exploring.

This work was funded in part by NSF Research Experience
for Undergraduates (REU) Grant IIS-0851976.
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