



# Motivation

## High Cognitive Load for Training in Flight Simulators

Heavy stream of aircraft data

Inconsistent instrument layouts across different aircrafts

Ineffective analog gauge design

Complex tabletop simulator controls

# **FAA-Certified Table-Top Flight Simulator**



## Simulated Cockpit of Beechcraft B58



# IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

# **Dynamic Periphery Display: Enhancing Pilot Decision Making in Simulated Flight**

Holly Baiotto, Shamaria Engram, Mitchell Massey Mentors: Christina Bloebaum, PhD, Elliott Tibor, Christopher White

# **Dynamic Engine Gauge Interface**



# **Development**

#### Goal

Create a dynamic interface to enhance flight trainee's decision making during flight simulation

## **Design Framework for Enhancing Decision Making**

- Gestalt Grouping
- Proximity Compatibility Principles
- Component Arrangement Guidelines
- Situation Awareness Design Heuristics

#### **Application Features**

- Digital readings for accurate state access
- Account for failure of system components
- Color emergence for status reporting
- User-centered and task-sensitive layout
- 8 fundamental engine gauges for B58 aircraft







## **Peripheral Warning Cues**

![](_page_0_Picture_36.jpeg)

- White = idle
- **Green** = healthy engine state
- **Yellow** = cautionary
- **Flashing Red** = dangerous engine state, take action

# **Data Transfer Process**

![](_page_0_Picture_42.jpeg)

# **Future Work**

## Research

- Perform user experimentation in Aerospace classroom
- Evaluate system with computational models

## Expansion

Commercialize for classroom environments, if found effective Adapt for physical aircrafts to improve pilot Situation Awareness Incorporate heads-up flight instruments